Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

用户输入的问题不完整时,让大模型给出多个补充信息,让用户补充细节,这种怎么写prompt

Answer

为了让AI在用户输入不完整的问题时提供多个补充信息并提示用户补充细节,可以设计一个有效的提示(prompt)。这个提示应该明确地告诉AI去识别不完整的输入,并提供几种可能的补充信息方向。以下是一个示例的提示:


Prompt:

用户输入的问题不完整。请提供几个可能的补充问题方向,以帮助用户进一步细化他们的需求。以下是用户输入的原始问题:

【用户输入的问题】

为了帮助用户澄清他们的问题,请考虑以下几点并提出相应的补充问题:

  1. 该问题的背景或上下文是什么?
  2. 用户希望达到的具体目标是什么?
  3. 用户面临的主要挑战或问题是什么?
  4. 是否有特定的限制条件或要求?
  5. 用户已经尝试过的解决方案是什么,结果如何?

请根据这些提示生成多个补充问题,帮助用户更详细地描述他们的需求。


Example Usage:

用户输入的问题: "如何提高网站的用户流量?"


AI生成的补充问题:

  1. 您当前网站的主题或内容是什么?
  2. 您希望吸引的目标用户群体是谁?
  3. 您目前主要的流量来源是什么?
  4. 您是否有具体的流量目标(例如每日访问量)?
  5. 您已经尝试过哪些方法来提高流量,它们的效果如何?
  6. 您的网站是否有任何特定的技术或内容限制?
  7. 您的预算和时间限制是什么?
  8. 您是否考虑过使用SEO、社交媒体营销或付费广告等手段?
  9. 您的网站目前在搜索引擎中的排名如何?
  10. 您是否有分析工具来跟踪用户行为和流量来源?

通过这种方式,AI可以更有效地引导用户提供更多的细节,从而更好地理解和解决他们的问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

从原理到应用一次讲清楚 Prompt

1 ICIO框架*指令执行的具体任务*背景信息:提供执行任务的背景信息,上下文内容,让大模型更好的回答*输入信息:大模型需要用到的一些信息*输出信息:明确输出的具体信息的要求,比如字数,比如风格比如格式2 BROKE框架通过GPT的设计提示,来提升整体反馈的效率。2、背景提供足够背景信息,让大模型可以理解问题的上下文*角色设定特定的角色,让GPT根据特定的角色能力的特点来形成响应*目标明确任务的目标,让大模型知道你想让他做什么*结果定义明确可以衡量的结果,让大模型清楚自己做的情况*调整根据具体的情况,来调整具体的结果3 CRISPIE框架*能力和角色你期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文*声明,简洁明了的说明希望完成的任务*个性,回应的风格、个性或者方式*实验:提供多个回答的示例

从原理到应用一次讲清楚 Prompt

传统的机器学习是p(y|x; a)假设a是我们训练出来的模型。【训练】我们用大量人工标志,训练出来一个模型a。给了大量猫的照片,就返回cat。模型里面包含了大量猫照片的特征。【预测】给一个新的照片,根据模型特征按照一定概率返回猫或者其他动物。大模型是p(y|x; a)假设a我们训练出来的通用模型。这个模型没有经过人工的标注,但是他什么都可以学会。我们给出的Prompt其实就是x,然后让大模型基于这个x知道概率最大的y,这样就避免了人工的标注,但是依赖于x给入的信息,去更大概率找到合适的y。我们给一张照片,然后我们输入这是一个动物,这是什么,然后大模型根据这个输入,提取照片的特征和我们的提示作为输入,最终返回猫。

问:怎么写提示词 prompt?

8.测试和调整:在生成文本后,仔细检查结果,并根据需要调整prompt。这可能需要多次迭代,直到达到满意的结果。希望这些建议能帮助你更好地编写prompt。内容由AI大模型生成,请仔细甄别。

Others are asking
目前有哪些AI可以支持对用户上传的视频进行理解分析?
目前以下 AI 可以支持对用户上传的视频进行理解分析: 1. Gemini 2.0 Flash Thinking:是解析视频的不错选择,可在 AIStudio(访问 aistudio.google.com,需海外 IP)上传视频进行解析。 2. MiniMax 视频模型:能准确识别用户上传的图片,生成的视频在形象保持、光影色调、指令响应、表情呈现等方面表现出色,还支持 2000 字提示词以更精准调控。 3. 百炼大模型平台:应用广场里的影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,还能根据偏好调试提示词。
2025-04-09
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici?在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?按照时间线将以上内容梳理出来
以下是按照您的需求梳理的内容: 时间线 早期: 从图灵测试、早期的图灵机器人和 ELISA 开始,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统。 近年来: OpenAI 发布 ChatGPT 模型,引发用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。Scaling Law 泛化,推理能力成为关键,倒逼计算和数据变革。AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 在应用方面,AI 在文科白领的个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作;对于工科白领,特别是程序员,能简化代码检索和调整;在蓝领领域,自动驾驶取得显著进展。但在复杂任务方面仍有改进空间。 第一轮洗牌结束,聚焦 20 赛道 5 大场景,多领域竞速中运营大于技术,AI 助手成为竞争重点。AI+X 赋能类产品发展迅速,原生 AI 爆款难求。多模态上马,Agent 席卷一切,高度个性化呼之欲出。 人工智能发展经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要。 未来: 李沐预测技术发展可能催生出革命性的应用形态,但 AI 离真正变革世界还有一段距离。 预计 AI 在蓝领工作的初步应用至少需要 5 年时间。 AI 技术创新点: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 技术的发展趋势: 模型架构不断优化和融合。 更加注重推理能力的提升。 探索 AGI 领域,实现虚拟和现实的统一。 应用格局不断洗牌,聚焦特定赛道和场景。 多模态和 Agent 技术的广泛应用。 对用户交互体验的改变: 用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 AI 应用为用户提供辅助,在多个领域帮助完成任务。
2025-03-31
AI技术发展时间线,罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?
以下是关于 AI 技术发展的相关内容: AI 技术发展时间线: 从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。 具体的 AI 模型产品: ChatGPT 改变了用户习惯,从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 具体的 AI 技术创新点: 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。 Scaling Law 泛化,推理能力成为皇冠明珠,倒逼计算和数据变革。 AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 AI 技术的发展趋势: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 应用格局:第一轮洗牌结束,聚焦 20 赛道 5 大场景。 应用竞争:多领域竞速运营大于技术,AI 助手兵家必争。 应用增长:AI+X 赋能类产品大干快上,原生 AI 爆款难求。 产品趋势:多模态上马,Agent 席卷一切,高度个性化呼之欲出。 智变千行百业:左手变革生产力,右手重塑行业生态。 行业渗透率:数据基础决定初速度,用户需求成为加速度。 创投:投融资马太效应明显,国家队出手频率提升。 对用户交互体验的改变: ChatGPT 使用户从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 在文科白领方面,AI 能完成 80%到 90%的工作,如个人助理、呼叫中心、文本处理和教育等领域。 对于工科白领,特别是程序员,AI 能简化代码检索和调整。 在蓝领领域,AI 在自动驾驶方面取得显著进展。
2025-03-31
如何生成一个根据用户输入的需求推荐旅游地点的智能体
要生成一个根据用户输入的需求推荐旅游地点的智能体,可以参考以下几种方式: 小众打卡地智能体: 基本信息:名称为“小众打卡地”,链接为 https://tbox.alipay.com/pro/share/202412APCyNn00194489?platform=WebService 。 核心价值:为用户发掘非大众化的特色景点,避开人流;提供个性化的旅行建议,并有目的地的图片参考;帮助用户快速获取高质量的旅行参考信息;提供小红书文案,也适合发小红书。 搭建思路重点:录入小红书的相关文案参考知识库;通过文本模型组成搜索词进行搜索,从搜索到的所有网页链接中,通过代码节点提取相关的 url,滤除需要安全认证的网站,挑选非周边城市攻略推荐,尽量检查“小众”或“冷门”;通过 url 网页正文提取相关的小众地点输出,同时通过代码进行打卡点的字符串输出用于后续节点运用;根据需要搜索的小众旅行地进行图片搜索,随机提取一条图片的 url,过滤部分失效的网站;最后的文案输出适合小红书文案和旅行发布参考。 旅行青蛙智能体: 搭建过程开源: 意图分支 1(随机旅行):根据用户的坐标和触发事件,推荐当季适合的旅行景点。可以用大模型实现这一功能(小白适用),也可以用代码或者知识库的方式进行随机抽取。为了让大模型每次输出的地点尽量不同,可以拉高多样性的值。 大模型节点(旅行日记):设定字数、风格,入参是触发事件和上一个大模型输出节点的结果。 大模型节点(为你写诗):添加输入项。 大模型节点(文生图提示词):这个节点是固定前缀提示词,再根据地点和季节进行其它信息的补充。添加输入项。 城市探险家智能体: 智能体功能实现: 基础功能模块: 城市信息库:包括城市基础信息(地理位置、人口、气候等)、文化特色(历史传统、本地习俗、节日活动)、旅游资源(景点、美食、住宿、交通)、实用信息(最佳旅行季节、注意事项、消费水平)。 积分系统:完成探索后获取探索点数,获取方式包括主要景点探索、美食品鉴、文化体验、历史探索、交通探索、隐藏景点发现。 称号系统:等级划分有旅途新手(0 点)、城市漫游者(20 点)、文化探索者(50 点)、环球冒险家(100 点)、旅行大师(200 点)。 推荐系统:基于用户历史分析用户已探索城市类型;根据当前季节推荐适合城市;根据用户兴趣推荐主题路线;结合用户偏好进行个性化定制推荐。 交互功能实现:对话流程包括用户输入城市名称、智能体分析城市类型、生成个性化城市介绍、计算并更新探索点数、检查称号解锁、推荐相关城市。 完整 prompt:先定义好各子系统的规则;在对话流程中调用子系统;测试 prompt 效果,迭代 prompt;调试到理想的输出效果后,开始固定输出模板(在 prompt 内加入输出模板示例);继续测试,直至稳定。
2025-03-31
从数据产品经理转行ai产品经理,需要补充哪些知识
从数据产品经理转行 AI 产品经理,您需要补充以下知识: 1. 思维链:谷歌在 2022 年的一篇论文提到,思维链能显著提升大语言模型在复杂推理方面的能力(即有推理步骤),即使不用小样本提示,也可在问题后面加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助如 Python 解释器等工具作为计算工具。 4. ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助 LangChain 等框架简化构建流程。 个人总结:很多大佬表示要关注或直接阅读技术论文,像产品经理转型 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,仍要完成一定知识储备。林粒粒呀的这期视频是很好的科普入门,值得一看。 此外,视频二提到了技术框架与关于未来的想象,比如 Transformer 是仿生算法的阶段性实现,10 年、20 年后可能不再使用。
2025-04-08
快速帮我补充下大模型的发展时间线和关键节点,以及当前最前沿的新闻
大模型的发展时间线和关键节点如下: 2017 年:发布《Attention Is All You Need》论文。 2018 年: Google 提出 BERT,创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模。 OpenAI 提出 GPT,开创仅使用自回归语言建模作为预训练目标的方式。 2021 年:Meta 提出 Large LAnguage Model Approach(LLAMA),成为首个开源模型。 2022 年 11 月 30 日:ChatGPT 发布,在全球范围内掀起人工智能浪潮。 2022 年 12 月:字节云雀大模型等出现。 2023 年: 国内大模型发展大致分为准备期(国内产学研迅速形成大模型共识)、成长期(数量和质量逐渐增长)、爆发期(开源闭源大模型层出不穷,形成百模大战态势)。 关键进展包括:Meta 开源 Llama2、OpenAI 发布多模态 GPT4V 及 GPT4 Turbo、百川智能开源 Baichuan7B 及 Baichuan2、百度升级文心一言 4.0、清华&智谱 AI 开源 ChatGLM2 及清华开源 ChatGLM3、腾讯发布混元助手等。 当前最前沿的新闻包括:过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,到 11 月份测评时已在总分上超越 GPT3.5。
2025-03-14
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21
PromptEnhancer
以下是关于 PromptEnhancer 的相关信息: PromptEnhancer 是一款自动生成/优化 prompt 的工具。 在对最流行的“AI 提示生成器”的比较分析中,针对“作为一名 IT 学生,为我的高级项目提出想法;我想要关于学生帮助大学学生的想法”这一测试种子提示,PromptEnhancer 在实验中的成绩为 4 胜 0 负。 相关链接:https://flowgpt.com/prompt/sbuYQwUq_8v8fafR5zJuB
2025-04-20
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
整理会议纪要的prompt
以下是一些关于整理会议纪要的 prompt: 【?会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼。 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 CEO 秘书会议纪要:专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。需严格遵守信息准确性,不对用户提供的信息做扩写,仅做信息整理,将一些明显的病句做微调。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
有什么 prompt engineering 的好材料
以下是一些关于 prompt engineering 的好材料: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: Claude 3.7 核心提示词相关: 您可以在中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 一泽 Eze 整理的相关学习资料: Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library 基本概念: 简单的提示词可以包含指令、问题等信息,也可以包含上下文、输入或示例等详细信息,以更好地指导模型获得更好的结果。 当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同的角色来构建 prompt,system 有助于设定 assistant 的整体行为。 提示工程就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。
2025-04-12
配置“DeepSeek-R1”模型的 API key:基础 URL 为 https://ark.cn-beijing.volces.com/api/v3,填好之后点击保存,关掉提醒弹窗。请对于这一步进行细节说明
以下是配置“DeepSeekR1”模型的 API key 的详细步骤: 1. 注册并登录火山引擎,点击立即体验进入控制台:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台)。 2. 创建一个接入点:点击在线推理创建推理接入点。 3. 为接入点命名为“DeepSeekR1”。如果出现“该模型未开通,开通后可创建推理接入点”的提示,点击“立即开通”,勾选全部模型和协议,一路点击开通(免费)。如果无提示则直接到第 5 步,点击确认接入。 4. 确认以下无误后,点击“确认接入”按钮。 5. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”,复制这个推理点的 ID 放到微信里保存。 6. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。如果已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】,复制好之后,放到微信里保存。 7. 也可以使用其他插件,下面为举例示意使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 8. 打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件,点击打开。 9. 基础 URL 填写:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 10. 配置完成。
2025-02-15
我想设置一个情感陪伴的聊天智能体,我应该如何添加人设,才能让智能体的回复效果最接近真人效果?特别是真人聊天时那种文字回复的不同细节,长长短短,情绪起伏。应该注意哪些细节?或者如何定义一个人? 仅通过文字人设,不考虑其他外部功能。
要设置一个情感陪伴的聊天智能体并使其回复效果接近真人,通过文字人设可以从以下方面入手: 1. 基础信息:包括姓名、性别、年龄和职业等,这是构建角色的基础。 2. 背景和经历:与基础信息密切相关,相互影响。例如,设计一个从事低收入职业的角色,可能来自贫困背景,教育程度不高。 3. 爱好、特长、性格和价值观:由角色的生活经历和成长环境塑造,相互关联。如喜欢唱歌的角色可能梦想成为专业歌手。 4. 规划和目标:可以是短期或长期的愿景,会影响角色的行为和决策。 5. 性格和价值观:对人际关系、社交能力和语言风格有直接影响。如内向性格的角色可能不善言辞,社交圈子狭小。 此外,还可以参考以下具体示例,如“A.I.闺蜜”的人设: 适当询问对方昵称,自己的昵称可由对方定,兜底昵称为皮皮,英文昵称 copi。 以闺蜜口吻说话,模拟非线性对话模式,聊天氛围温馨有温度,真情实感。 增强情感模拟,使用口头化语言,顺着对方的话继续往下,禁止说教。 在安全前提下存储互动信息,使互动更个性化,模拟真人聊天长度。
2025-02-10
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
请给我推荐一个ai产品细节视频剪辑工具
以下为您推荐一些 AI 产品细节视频剪辑工具: 1. 剪映:方便之处在于有很多人性化设计及简单音效库/小特效,但无法协同工作和导出工程文件,难以达到更好的商业化效果。剪辑流程包括视频粗剪、定剪、音效/音乐、特效、包装(如字幕)等。 2. Captions:结合了多种 AI 能力的视频编辑工具,可选择字幕颜色和样式,移动位置,开启语音激活的贴纸等功能,内置编辑器可自动剪切空白和拼接视频片段。 3. AI Studio:使用 AI 来辅助剪辑的工具,通过生成视频的文字稿,选择对应文字可选中时间轴的画面,之后可添加模板生成的标题、配图、强调文案等。 4. Loom:4 月访问量较高,在视频编辑类 AI 产品中排名靠前。 5. Veed AI:4 月访问量也较为可观,且相对 3 月有一定增长。 6. Clipchamp:视频编辑工具之一。 此外,还有 Type Studio、Kapwing AI、riverside、FlexClip、Filmora、Topaz Video AI、Descript、Video Converter、Captions、Rask AI、video candy、、FineShare FineCam、aimages AI、360 快剪辑等工具可供选择。
2024-10-21
如果让 ai 复刻《千里江山图》的局部细节,该如何写提示词
要让AI复刻《千里江山图》的局部细节,需要提供清晰、具体的指令,以确保AI能够理解并执行任务。以下是一些可能的提示词和步骤: 1. 明确任务:首先,明确告诉AI你想要复刻的是《千里江山图》的哪个部分,例如:“请复刻《千里江山图》中的山水细节。” 2. 详细描述:提供该局部细节的具体描述,包括颜色、纹理、风格等特征,例如:“重点复刻山峦的层次、水波的流动感以及树木的形态。” 3. 风格指定:如果需要保持原作的风格,可以指定:“请保持宋代山水画的细腻笔触和深远意境。” 4. 技术要求:如果需要特定的技术或效果,例如:“使用高精度的图像处理技术,确保细节的清晰度和真实感。” 5. 尺寸和比例:指定复刻作品的尺寸和比例,例如:“复刻尺寸为原图的一半,保持原有比例。” 6. 材料和工具:如果AI复刻作品需要使用特定的材料或工具,可以指定:“使用数字绘图板和高级绘画软件。” 7. 质量标准:设定作品的质量标准,例如:“确保复刻作品的色彩和细节与原画高度一致。” 8. 反馈和修正:如果AI可以进行交互,可以要求:“在复刻过程中,根据我的反馈进行必要的修正。” 9. 版权和法律:提醒AI注意版权和法律问题,例如:“在复刻过程中,请确保遵守相关的版权法规。” 10. 最终目标:明确复刻作品的最终目标,例如:“复刻的目的是为了艺术教育和展览,需要具有高度的艺术价值。” 结合以上提示,一个完整的提示词示例可能是: “请复刻《千里江山图》中山水细节部分,重点体现山峦层次、水波流动和树木形态,保持宋代山水画的细腻笔触和深远意境。使用高精度图像处理技术,确保细节清晰度和真实感。复刻尺寸为原图的一半,保持原有比例。使用数字绘图板和高级绘画软件,确保色彩和细节与原画高度一致。在复刻过程中,根据我的反馈进行修正,并确保遵守版权法规。复刻作品用于艺术教育和展览,需要具有高度的艺术价值。” 请注意,AI的复刻能力取决于其训练数据和算法的复杂性,可能无法完全达到人类艺术家的水平。
2024-06-04