Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

SD云端部署的教程

Answer

Stable Diffusion(SD)的云端部署允许用户利用云服务器的强大计算能力来运行和操作AI绘图模型,无需高端的本地硬件。以下是SD云端部署的教程概述:

  1. 购买云服务器:选择一个云服务提供商,如腾讯云,并购买GPU服务器。在购买时选择合适的配置,如GN7 8核32GB,N卡,并选择Ubuntu Server作为操作系统。
  2. 配置运行环境:安装Anaconda以管理Python环境和依赖。可以通过wget下载Anaconda安装脚本,并按照提示完成安装。
  3. 安装SD-webui:将SD-webui克隆到服务器上,使用git clone命令。然后,修改相关配置文件,如launch.until.py,以适应国内的网络环境。
  4. 启动SD:在激活了相应conda环境后,定位到stable-diffusion-webui项目目录下,执行启动脚本,如./webui.sh --listen,以启动SD的Web界面。
  5. 修改Webui配置:编辑webui.user.sh文件,预先配置一些参数,简化启动流程。
  6. 扩展换源:由于一些扩展源无法在国内直接访问,需要替换成国内可访问的源,如秋叶大佬的源地址。
  7. 下载与安装LoRA和VAE:下载必要的模型,并上传到服务器的相应目录下。LoRA和VAE模型通常需要放置在特定的文件夹内,并在Web UI中进行配置以使其可用。
  8. 安装ControlNet:根据服务器的位置,选择直接从GitHub安装或下载压缩包后上传至服务器。
  9. 配置Clip Skip:调整Clip Skip的设置,并在UI中添加相应的模块以启用该功能。
  10. 安装Hypernetworks(可选):下载并安装Hypernetworks模型,上传到指定的文件夹,并刷新Web UI。
  11. 插件使用:安装汉化插件和其他有用的扩展,如中英对照tag自动补全插件,以改善用户体验。
  12. 保持服务器连接:使用如Putty等工具保持服务器连接的稳定性,避免因连接中断而导致的工作中断。
  13. 其他注意事项:在部署过程中,确保网络环境稳定,及时解决可能遇到的技术问题,并合理管理服务器资源以避免不必要的费用。

请注意,具体的部署步骤可能会根据云服务商的不同而有所变化,同时,确保遵循云服务提供商的使用条款和隐私政策。在部署时,也要注意数据安全和隐私保护,避免泄露敏感信息。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
sd教程
以下是关于 SD 的一些教程: 用 SD 做二维码: 好看的二维码欣赏:第一个就是 qrbtf。 最近新出了融合二维码教程。 方法原文地址:https://stablediffusionart.com/qrcode/ 相关帖子展示了使用 Stable Diffusion 创建的艺术二维码,是使用定制训练的 ControlNet 模型生成的,人们也想出了在无自定义模型情况下制作 QR 码的方法。 用 SD 做中文文字(持续更新中): 制作思路: 将中文字做成白底黑字,存成图片样式。 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 输入关键词,如奶油的英文单词,Cream+Cake(加强质感),反关键词:Easynegative(负能量),反复刷机,得到满意的效果即可。 同理可输出 C4D 模型,可自由贴图材质效果,3d,blender,oc rendering。 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 打开高清修复,分辨率联系 1024 以上,步数:2960。 参考视频教程:【“牛逼”的教程来了!一次学会 AI 二维码+艺术字+光影光效+创意 Logo 生成,绝对是 B 站最详细的 Stable Diffusion 特效设计流程教学!AI 绘画进阶应用哔哩哔哩】https://b23.tv/c33gTIQ SD 的各种实践教程: 线稿上色 Midjourney+Stable Diffusion:https://waytoagi.feishu.cn/wiki/AsbYwmfS6ikhr3kNsCocdPMEnUd 猫咪狗狗 lora:https://waytoagi.feishu.cn/wiki/JiQewVbOHi7tzakS23ecprxsnfg 字体设计机甲战士:https://waytoagi.feishu.cn/wiki/GUQ3w52elisr9ukIgkBc42UmnWd 做盲盒平面变 3D:https://waytoagi.feishu.cn/wiki/SCK8wV4PTiHQVKkvGRUcx0fcnTe MJ 出图 SD 放大:https://waytoagi.feishu.cn/wiki/E88nwOtk9ilRQskg3Qlc6ZHpnTf 七夕字体和图:https://waytoagi.feishu.cn/wiki/BjQ1wLRv0ivCLtk136VchSCqnpU 可爱毛粘字体:https://waytoagi.feishu.cn/wiki/NjhbwF1cTiQ5Xjkd3tNc1OWynZd
2025-04-08
绘画工具sd怎么使用?
以下是关于绘画工具 SD 的使用方法: 1. 生成超大图像: 若想用 SD 绘制超高分辨率图片(如 10000x768 的清明上河图),直接调分辨率不可行,会爆显存,正常尺寸设置最高到 2048。 先在 PS 中设置所需大尺寸画布,保存为 jpg 图片。 将图片放入 ControlNet 中,点击右下角箭头,将图片尺寸信息发送到生成设置。 填入正反向提示词,启用 Tiled Diffusion 插件,其中方案选择 Mixture of Diffusers,可防止接缝产生。 2. 提示词标签选择: 按顺序选择标签词,如女孩、白头发、蓝眼睛等。 选择画质和视角,如最好的质量、杰作、从人物角度往下看等。 选择艺术风格,如皮克斯动画、轮廓光。 填写负面提示词,点击选框结尾的“负面”。 模型选择“revAnimated”,调整尺寸后点击生图。 3. 真人转二次元及图生图: 使用【X/Y/Z plot】脚本做参数对比,设置 X 轴为提示词相关性(取值范围 130,每次增加 5),Y 轴为重绘幅度(取值范围 01,每次增加 0.2)。 提示词相关性在 6—11 中间为最佳,重绘幅度大小可控制生成图与原图相似度。 可使用绘图功能增加或修改元素,如增加红色眼镜、去掉衣服图案、更换头部或修改帽子部分等。
2025-04-01
comfyui 与 SD 功能上有啥区别
ComfyUI 与 SD 在功能上主要有以下区别: 1. 工作原理:ComfyUI 更接近 SD 的底层工作原理。 2. 自动化工作流:ComfyUI 具有更出色的自动化工作流,能够消灭重复性工作。 3. 后端工具:ComfyUI 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 API 等。 4. 定制开发:可根据定制需求开发节点或模块。 5. 应用场景:例如在抠图素材方面,ComfyUI 能根据需求自动生成定制的抠图素材。 6. 与其他软件的结合:如与 Blender 整合,从工作流程上天然适配。 7. 工作流搭建:ComfyUI 以连线方式搭建工作流,可通过改变节点实现不同功能,具有更高的自由和拓展性,能根据自身需求搭建和改造工作流。
2025-03-28
我是一名电商设计师,现在想学习SD AI绘图,有一点基础,但学习课程资源有限,请你帮我制定一份详细的学习计划,并提供一些学习资源。
以下是为您制定的学习 SD AI 绘图的详细计划及相关学习资源: 学习计划: 1. 首先,深入学习 Stable Diffusion 的核心基础原理,包括模型工作流程、核心基础原理、训练全过程以及其他主流生成式模型介绍。 2. 接着,掌握 Stable Diffusion 的核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型等。 3. 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同方式,如使用 ComfyUI、SD.Next、Stable Diffusion WebUI、diffusers 搭建推理流程,并查看生成示例。 4. 了解 Stable Diffusion 的经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建等。 5. 最后,尝试从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括配置训练环境与训练文件,以及基于 Stable Diffusion 训练 LoRA 模型。 学习资源: 1. 教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎。 目录涵盖了 Stable Diffusion 系列的各个方面,包括核心基础知识、网络结构解析、搭建推理流程、应用场景和模型训练等。 2. SD 模型权重百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得资源链接,包含多种模型权重。 3. SD 保姆级训练资源百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得资源链接,包含数据处理、模型微调训练以及基于 SD 的 LoRA 模型训练代码全套资源。 4. Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2025-03-28
SD如何部署
SD 的部署方式如下: 1. 本地部署(Win 系统): 系统要求:Win10 或 Win11。 查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:需要满足 3 个要求(推荐),电脑运行内存 8GB 以上,是英伟达(NVIDA)的显卡,显卡内存 4GB 以上。打开任务管理器(同时按下 ctrl+shift+esc),可查看电脑运行内存,8GB 运行内存可以勉强运行 SD,推荐 16GB 以上运行内存;查看电脑显卡内存(显存),4GB 显存可运行 SD,推荐 8GB 以上显存。 配置达标跳转至对应安装教程页:。 一键式安装: 电脑配置能支持 SD 运行的朋友们,可使用 B 站秋叶分享的整合包。 具体安装方法: 打开链接 https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,下载《1.整合包安装》,存放到电脑本地。 打开保存到电脑里的文件夹。 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 选择解压到 D 盘或者 E 盘,小心 C 盘被占满,点击确定。 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,桌面快捷方式。 双击启动器,等待更新,接着点击左边第二个“高级选项”,在显存优化里,根据自己电脑的显存选择(就是上面查看的专用 GPU 内存),自己电脑是多少就选多少。 回到第一个一键启动,点击右下角的一键启动。出现代码页面不用管,等一下就行了,SD 的主界面会自动在网页上弹出来。如果出现报错,可以回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。 2. 云端部署: 部署流程: 安装和配置基础环境:浏览器上按照腾讯云>控制台>云服务器的路径找到你刚才购买的实例,点击启动,就会新开一个远程访问的窗口,输入你购买时设置的密码,进入,这样你就有了一个远程的 Windows 系统环境,接下来安装显卡驱动、配置环境变量即可。 安装显卡驱动:用内置的 IE(也可下载 Chrome),打开英伟达的网站,找到驱动下载,选择购买机器时选定的显卡型号、Windows 版本号,下载对应的驱动,然后安装上。 配置环境变量:驱动安全完成后,开始配置环境变量。首先先找到你安装后驱动所在的目录,如果没有特殊设定的话,一般是在「C:\\Program Files\\NCIDIA Corporation」这里,复制这个路径,找到环境变量配置入口(控制面板>系统和安全>系统),选择「高级系统设置」,弹窗设置环境变量,找到「系统变量」里的 Path 环境变量,点击「编辑...」,然后「新建」,帮刚才复制的 nvidia 驱动安装地址粘贴进去,保存即可。 备选:SD 好难,先试试简单的无界 AI:
2025-03-25
sd 换脸
以下是关于 SD 换脸插件 Roop 的详细步骤: 1. 勾选包含 Python 和 C++包等相关项目,更改安装位置后点击右下角安装。安装时间较长,需耐心等待。 2. 安装好后,打开 SD 文件目录下的相关文件夹,在地址栏输入“cmd”并回车,在打开的 dos 界面粘贴“python m pip install insightface==0.7.3 user”代码,自动安装 insightface。若此阶段出错,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),在云盘后台回复【SD】可下载。 3. 安装完成后,重新打开启动器,后台会继续下载一些模型,全程要保证科学上网。 4. 选用真实系模型“realisticVisionV20”,关键词描述相关内容生成照片。 5. 启用 ROOP 插件,选择要替换的人物照片,面部修复选择“GFPGAN”,根据需求设置右边的参数数值和放大算法,点击生成。 6. 若生成的人脸像素偏低、模糊,可将图发送到“图生图”,开较小的重绘幅度,然后使用 controlnet 中的 tile 模型进行重绘。 此插件主要适用于真实人脸替换,对二次元人物作用不大。在使用时要谨慎,切勿触犯法律。若想要此插件,可添加公众号【白马与少年】,回复【SD】即可。推荐使用最新的秋叶整合包,出错概率最小,且科学上网很重要。
2025-03-19
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
Mcp教程
以下是关于 MCP 教程的相关内容: 资源链接: 什么是 MCP 以及为什么要用它: Model Context Protocol(模型上下文协议),简称 MCP,是由 Anthropic 公司提出的一个开放标准,旨在解决 AI 模型与外部数据源和工具之间的连接问题。 MCP 就像是 AI 世界的“USBC 接口”,它提供了一种标准化的方式,让 AI 应用能够轻松连接到各种数据源和工具,不需要为每个新连接重新开发接口。 MCP 解决的主要问题包括: 碎片化集成:以前每个 AI 应用都需要单独开发与各种数据源的连接。 重复工作:不同团队重复构建相似的集成方案。 “N 乘 M 问题”:当有 N 个 AI 客户端需要连接 M 个数据源时,可能需要 N×M 个自定义集成。 希望这篇教程能帮助您了解 MCP 的基础知识,并开始构建自己的 MCP 服务器!随着实践的深入,您会发现 MCP 为 AI 应用与数据源及工具的集成提供了简单而强大的解决方案。 本篇内容由 Genspark 制作 https://www.genspark.ai/autopilotagent_viewer?id=c10e49b3228d4f65be347ab34777aaf8
2025-04-15
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南:长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 其他相关基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-04-13
如何使用MCP?提供教程
以下是关于如何使用 MCP 的详细教程: 前置准备工作: 任选一个客户端软件进行配置,大致分为四步: 1. 填入大模型 API 密钥。 2. 找到 MCP 配置界面。 3. 填入 MCP Server 对应的 json 脚本。 4. 使用 MCP。 不同客户端软件的配置方法: 1. Cherry Studio(推荐): 版本:2025 年 4 月发布的 1.1.17。 配置大模型 API:填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP:例如,图中填写的就是 Playwright 的 MCP Server 和百度地图的 MCP Server。 使用 MCP。 2. Cursor(推荐): 配置大模型 API:如果 Cursor Pro 在免费试用期,这一步可以不做;如果不在免费试用期,最好的办法是氪金,也可以试试填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP Server:填入 MCP Server 的 json,保存。 回到 Cursor 的 MCP 配置页面,等待几秒钟,多点几次蓝色框里的按钮,直到绿灯亮起,并显示出所有 MCP 工具。 使用 MCP:Ctrl+Shift+L 新建对话,将模式设置为 Agent。 3. Claude Desktop: 配置 MCP Server:用文本编辑器(VSCode、Sublime Text 等)打开 claude_desktop_config.json 文件,填入 MCP Server 对应的 json 文件,保存。 重启 Claude Desktop。 查看 MCP Server 连接状态。 使用 MCP。 MCP 的好处: 1. 简化开发:一次整合,多次复用,不再重复开发。 2. 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 3. 实时互动:长连接保证数据实时更新。 4. 安全可靠:内置标准化安全和权限控制。 5. 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 传统 API 更适合的场景: 1. 需要细粒度控制、功能严格限制。 2. 更偏好紧耦合以提升性能。 3. 希望最大化交互的可预测性。 快速集成 MCP 的步骤: 1. 定义能力:明确您的 MCP 服务器提供哪些功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接您的数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 MCP 与 API 的比较: MCP 与传统 API 之间的主要区别在于: 1. 单一协议:MCP 充当标准化的“连接器”,因此集成一个 MCP 意味着可能访问多个工具和服务,而不仅仅是一个。 2. 动态发现:MCP 允许 AI 模型动态发现可用工具并与之交互,而无需对每个集成进行硬编码知识。 3. 双向通信:MCP 支持持久的实时双向通信 类似于 WebSockets。AI 模型既可以检索信息,也可以动态触发操作。 以 Cursor 驱动 blender 自动化建模的 MCP 项目为例: 首先,在 github 上找到项目说明(https://github.com/ahujasid/blendermcp)。以 Mac 安装为例,首先要安装一个 uv 包(如果不懂,就直接新建一个项目文件夹后,将相关需求丢给 AI)。显示 uv 安装完毕后(初次使用可能需要安装一系列的环境,只要一路让 AI 安装就可以了),还是找到点击界面右上角的小齿轮图标。找到 MCP 模块 Add new global MCP server,将相关内容粘贴进去。退回 MCP 界面时,就会发现已经连接上了这个 blender 服务器,并且增加了很多具体功能。
2025-04-13
AI视频教程
以下是为您提供的 AI 视频教程相关内容: AI 让古画动起来的教程: 1. 对于简单的图,找原图直接写提示词即可。若碰到多人多活动的复杂图,需把长图分多个模块,比如将一张图分成 4 个模块。 2. 智能抠图,用工具把要动的内容去除掉,用 AI 生成图片部分。若有水印,可以把图片向下拓展一部分,然后截掉。 3. 将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 4. 用 AI 视频生成工具写入提示词让图片动起来,如即梦、海螺、混元等工具,不停尝试抽卡。 5. 用剪映把抽卡合格的视频放在去掉内容的背景图片,通过色度抠图调整去掉视频的背景。多个视频放在背景图片,一起动即可。 AI 视频相关的软件教程: 包括视频模型如 luma Dream Machine、可灵、MiniMax 海螺 AI、Sora、Vidu 等,工具教程如 Hedra,视频工具如 VIGGLE,以及应用教程如视频转绘、视频拆解等。相关链接如下: WaytoAGI X 剪映的 AI 创意视频征集令·第 1 期: 1. 征集内容:使用 AI 功能创作的创意视频成片,也可投稿 AI 创意视频的教程(教大家如何做一个 AI 创意视频)。AI 功能包括但不限于:AI 对口型、AI 改动作、AI 配音、克隆音色、AI 音乐、AI 特效、AI 图文成片、AI 剪视频等。不包括纯图片生成或纯视频生成的内容(特指用 AI 工具生成的图片、图生视频,但视频里没有添加 AI 功能)。 2. 创作工具:主要使用「剪映」平台工具创作,可多使用剪映平台的 AI 功能/新功能;部分 AI 效果若剪映无法实现,可使用其他软件创作。 3. 内容价值:视频需有消费价值,要有一定内容主题,有故事感、或者有梗、或者有核心观点表达,让用户有持续观看和点赞、收藏的欲望。缺少内容主题、过于简单、过于模板化的内容将不予通过。在抖音、小红书等平台点赞量高的内容,审核通过率大大提升! 4. 原创度:作品需要原创、极具创意和独特性,且符合当代年轻群体的审美和兴趣喜好,不可照搬、抄袭他人创意,一经发现将取消活动奖励,视情节严重情况回收灵感发布权限。 5. 作品延展度:作品有可模仿性,其他创作者看完后,可模仿学习或二创。比如:前期素材易获取,后期素材易剪辑或处理,让其他视频创作者有强烈的模仿欲望,且对自己模仿或二创视频有成就感和分享欲。 6. 作品时长:时长适中,最短不低于 15 秒,最长不建议超过 3 分钟。
2025-04-13
AI出设计图教程
以下是关于 AI 出设计图的教程: 使用 Midjourney 生成 UI 界面: 页面指令:指定生成某个页面(如首页、登录页等),只需添加页面指令描述,如“landing page”(登录页)、“Profile Page”(个人资料页)。 社交平台:关键词“landing page”可生成社交平台的登录页设计。 信息类:关键词“Profile Page”可生成人力资源类产品的个人资料页,包含照片、自我介绍、基本信息等内容。 Midjourney 产出的设计图视觉效果不错,适合在 APP 设计的初始阶段,如头脑风暴和风格探索中为设计师提供灵感和创意。但目前要直接用于开发仍有距离。 使用 Claude 生成设计稿的技巧: 引用 Tailwind CSS 写组件样式,确保色彩、响应式和基础组件的美观度。 按照特定的四个技巧可让 Claude 设计出美观的界面或组件。 生成设计稿的方法:将生成的代码部署到线上,使用 html.to.design 这个 Figma 插件将网页转换为设计稿,但每天免费次数有限。 进阶技巧和关键词: 图片内容一般分为二维插画和三维立体两种表现形式。 主题描述:可描述场景、故事、元素、物体或人物细节等。描述场景中的人物时应独立描述,避免长串文字,否则 AI 可能识别不到。 设计风格:可通过找风格类关键词参考或垫图/喂图,让 AI 根据给出的图片风格结合主题描述生成相应风格的图片。对于材质的描述,关键词的运用较为复杂,需要针对特定风格进行“咒语测试”。
2025-04-12
如何坐大模型云端部署
以下是关于大模型云端部署的相关信息: SDXL 大模型云端部署: 1. 模型准备:SDXL 的大模型分为 base+refiner 和配套的 VAE 模型。您可以关注公众号【白马与少年】,回复【SDXL】获取下载链接。 2. 版本升级:在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 放置模型:将 base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。 4. 启动使用:启动 webUI,在模型中即可看到 SDXL 的模型,可在文生图中使用 base 模型,填写提示词和常规参数进行生成。 把大模型接入小米音箱: 参考 migptgui 官方教学:https://migptgui.com/docs/intro/docker 。 步骤包括: 1. 安装 Docker。 2. 下载镜像。 3. 在终端中运行。 4. 打开,如果是部署在服务器里的 Docker,请使用服务器的 IP 地址替换 localhost,例如 http://192.168.1.1:36592 。 部署和训练自己的 AI 开源模型: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-03-13
如何做大模型的云端部署与微调
做大模型的云端部署与微调,主要包括以下步骤: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。需根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源: 确保有足够的训练数据覆盖目标应用场景。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT、GPT 等。 也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护: 大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 例如,对于 SDXL 的大模型,本地部署时要注意模型分为 base+refiner 以及配套的 VAE 模型,需将其放入对应文件夹,并在秋叶启动器中将 webUI 的版本升级到 1.5 以上。而对于 Llama3 的部署和微调,实操分两部分,包括本地部署并通过 webdemo 对话,以及使用特定数据集进行微调,具体流程为购买服务器、安装代码环境、下载通用模型和数据集、挑选微调框架、编写微调程序和验证结果。 总的来说,部署和微调大模型需要综合考虑多方面因素,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2024-10-26
对于大语言模型使用的未来趋势,是闭源云端还是开源本地部署,作为普通用户是否有必要了解本地部署知识,并且是否有必要自己搭建agent以及rag?
大语言模型的未来趋势在闭源云端和开源本地部署方面存在多种可能性。 对于开源本地部署,以下是一些相关信息: Ollama 是一个方便用户在本地运行和管理大型语言模型的框架,具有以下特点: 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 提供模型库,用户可从中下载不同模型,以满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装可访问 https://ollama.com/download/ 。 可以通过一些教程学习如何本地部署大模型以及搭建个人知识库,例如了解如何使用 Ollama 一键部署本地大模型、通过搭建本地聊天工具了解 ChatGPT 信息流转、RAG 的概念及核心技术、通过 AnythingLLM 搭建完全本地化的数据库等。 同时,采用开源或国内企业提供的 13B 级模型本地部署在内部系统中,虽需投入算力,但有其价值。智能客服的大量优质大客户可能会选择自己搭建智能客服平台,并结合大模型企业提供的技术服务,基于大模型搭建 LangChain、RAG 框架,实现 RPA 自动流程。 对于普通用户是否有必要了解本地部署知识以及是否有必要自己搭建 agent 以及 rag,这取决于个人需求和兴趣。如果您希望更深入了解大模型的工作原理和运行机制,或者有特定的个性化需求,那么了解和尝试本地部署可能是有意义的。但如果只是一般的使用需求,可能无需深入了解和自行搭建。
2024-09-03
云端comfy ui
以下是关于云端 Comfy UI 的使用教程: 1. 打开链接的工作流:https://www.esheep.com/app/5977 ,点击查看工作流,会出现登录或注册界面,正常注册即可。如果已经登录会自动出现相应界面。 2. 步骤 1:红色框选择生成图片的大模型,绿色框添加提示词,蓝色框填写反向提示词。 3. 步骤 2:红色框设置大小确保是 16:9 的比例,绿色框修改参数,若不理解参数保持默认即可。 4. 步骤 3:红色框上传深度图。 5. 步骤 4:点击立即生成,最下面就会出现图片,在生成历史中下载图片即可。
2024-08-11
如何本地部署大模型,如何选择是否使用云服务商
以下是关于本地部署大模型以及选择是否使用云服务商的相关内容: 本地部署大模型的主要步骤: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 以 SDXL 为例的本地部署步骤: 1. SDXL 的大模型分为两个部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对生成的模型进行细化,生成细节更丰富的图片。还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 2. 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,启动 webUI,就可以在模型中看到 SDXL 的模型。 以 LLM 大语言模型为例的本地部署步骤: 1. 下载并安装 Ollama,点击进入根据电脑系统下载 Ollama:https://ollama.com/download ,下载完成后,双击打开,点击“Install”,安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。如果是 windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车,等待下载完成。 总的来说,部署大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-04-14
本地部署
SDXL 的本地部署步骤如下: 1. 模型下载:SDXL 的大模型分为两个部分,第一部分 base + refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对文生图生成的模型进行细化以生成细节更丰富的图片。此外,还有一个配套的 VAE 模型用于调节图片的画面效果和色彩。这三个模型可通过关注公众号【白马与少年】,回复【SDXL】获取云盘下载链接。 2. 版本升级:要在 webUI 中使用 SDXL 的大模型,需在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 放置模型:将 base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。 4. 启动使用:完成上述步骤后启动 webUI,即可在模型中看到 SDXL 的模型。正常使用时,先在文生图中使用 base 模型,填写提示词和常规参数(如尺寸设置为 10241024)进行生成。然后将图片发送到图生图当中,大模型切换为“refiner”,重绘幅度开小一点再次点击生成。 5. 插件辅助:若觉得操作麻烦,可在扩展列表中搜索 refine 安装插件并重启,启用插件后可在文生图界面直接使用 refine 模型进行绘画。 另外,关于本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG,步骤包括导入依赖库(如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型)、从订阅源获取内容(通过指定函数从 RSS 订阅 url 提取内容,并将长文本拆分成较小的块附带相关元数据)、为文档内容生成向量(使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储),最终实现 RAG。
2025-04-13
我有秋叶整合包,然后需要怎么搭建本地部署?
以下是使用秋叶整合包搭建本地部署的步骤: 1. 下载整合包:可以从。 2. 复制启动器到下载仓库的目录下。 3. 打开启动器,可一键启动。如果有其他需求,可以在高级选项中调整配置。 显存优化根据显卡实际显存选择,不要超过当前显卡显存。xFormers 能极大地改善内存消耗和速度,建议开启。 4. 准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地 URL 后说明启动成功。 如果报错提示缺少 Pytorch,则需要在启动器中点击配置。 5. Stable Diffusion webui 的更新比较频繁,请根据需求在“版本管理”目录下更新,同时注意插件的更新。 在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。 具体安装方法: 1. 打开整合包链接(https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,提取码:caru),下载《1.整合包安装》,存放到电脑本地。 2. 打开保存到电脑里的文件夹。 3. 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 4. 选择解压到 D 盘或者 E 盘(避免 C 盘被占满),点击确定。 5. 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 6. 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,选择桌面快捷方式,方便下次进入。 7. 双击启动器,等待更新,接着点击左边第二个“高级选项”,在显存优化里,根据自己电脑的显存选择。 8. 回到第一个一键启动,点击右下角的一键启动。出现代码页面不用管,等待 SD 的主界面在网页上自动弹出。如果出现报错,可以回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。
2025-04-12
如何部署自己私人AI
部署自己私人 AI 可以参考以下几种方式: 通过云服务器、dify、智能微秘书来免费搭建微信机器人: 1. 在宝塔面板的终端安装相关命令,这些命令位于/root/dify/docker 目录下。 2. 检查运行的容器数量,若 nginx 容器无法运行,可能是 80 端口被占用,可将终端输出的代码粘贴给 AI 以解决。 3. 在浏览器地址栏输入公网 IP(去掉后面的:8888),进入后邮箱密码随便填,建立知识库并进行设置。 4. 选择模型,国内模型有免费额度可选,如智谱 ai,获取钥匙并复制保存,创建应用进行测试和发布。 基于 Hook 机制的微信 AI 机器人: 1. 将 Administrators 改成“wxid_dna83ykqawl222”。 2. 若有 FastGPT 或者 OpenAI 的 key,将 Ai_Lock 修改成“1”,并在 OpenAI 处添加模型 key;若没有,保持 Ai_Lock 为 0。 3. 修改后点击保存。 4. 返回 NGCbot 文件夹下,找到 main.py 文件双击运行。 5. 运行后会弹出微信登录框,正常登录微信,等待系统自动初始化必备文件。 6. 运行成功后,用“大号”给机器人发消息,拿到 wxid 并返回替换。 7. 添加完后,用小号登录,大号可对小号发号施令。 部署和训练自己的 AI 开源模型: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身资源、安全和性能需求选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,如开源的 BERT、GPT 等,也可自行训练基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,重视大模型涉及的大量数据和隐私信息的安全性和合规性。 总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-04-11
DEEP SEEK 本地部署(Olama + ChatBox)+私有知识库(cherrystudio)
以下是关于 Deep Seek 本地部署(Olama + ChatBox)+私有知识库(cherrystudio)的相关内容: 一、使用 Docker + RAGFlow + Ollama 搭建个人/企业知识库 1. 将 Ollama 部署的模型接入 GARFlow 返回 RAGFlow 中,打开右上角设置,进入模型提供商,配置 Ollama 相关信息,基础 URL 按要求设置,设置完成后点击确定。 导入一个 embedding 模型用于文本向量化,导入成功后设置系统模型设置,然后返回知识库创建知识库。 进入数据集,导入文件(可设置文件夹当作知识库),导入完毕后解析文件,解析速度取决于本机 GPU 性能,解析好后进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。 2. 使用 Ollama 本地部署 DeepSeek 模型 先下载 Ollama 程序,官方网址:https://ollama.com/ 。 下载默认到 C 盘(一般为固态盘,运行速度快),若想修改安装目录到 D 盘,后续会有说明。 下载完右下角会出现 Ollama 图标,打开命令行输入相关命令回车。 若显卡是英伟达 2060Super,可选择 Deepseekr1:14b 的模型,根据自身独立显卡性能下载。 下载速度慢可按 Ctrl+C 强制退出重新下载。 下载完毕后再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相关命令,下载好后直接退出终端。 二、Flowith 相关报道、采访、使用指南 |标题|发布账号|社媒来源|日期|链接| |||||| |ChatGPT 的对话框过时了?这款 AI 产品提供了一种很新的聊天方式|爱范儿|公众号|2024/04/29|| |Flowith:革新你的工作方式,体验节点式 AI 的超流畅生产力|程序那些事儿|公众号|2024/05/03|| |体验 Flowith:探索人机交互从传统聊天对话到画布式知识管理的转变|AI 兔子洞|公众号|2024/04/22|| |deepseek 服务器繁忙?硅基流不动?看看这篇,内含 18 个平台,可能是最全的 deepseek 方案。|佐佐的 AI 笔记|公众号|2025/02/06|| |满血版自部署 DeepSeekR1+知识库+联网搜索,体验下来可能就只剩下这家了!|字节笔记本|公众号|2025/02/12|| |DeepSeek 让 AI 圈卷出了新高度:Flowith 宣布 DeepSeek R1 现在免费提供!|字节笔记本|公众号|2025/01/27|| |ShowMeAI 周刊 No.15|上周最有讨论度的 6 个 AI 话题:自由画布类产品密集更新、多主体一致成发展趋势、AGI、开源…|ShowMeAI 研究中心|公众号|2025/01/21||
2025-04-10
本地部署大模型,如何微调建立本地知识库
以下是关于本地部署大模型并微调建立本地知识库的详细步骤: 一、使用 AnythingLLM 进行本地知识库搭建 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 二、张梦飞的全本地部署教程 1. 部署大语言模型 下载并安装 Ollama 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 下载 qwen2:0.5b 模型 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入,点击回车。 三、智能纪要中的相关内容 在智能纪要中,许键介绍了模型 API 调用方法与知识库创建,包括获取 API key 位置及调用设置,详细讲解了创建 Rag 应用(知识库)流程,如上传非结构化文件、数据解析、切分段落等操作,并回答了诸多问题。同时还涉及工作流创建、模型能力及相关问题的探讨,以及通义千问相关应用及明天课程安排交流等内容。 总之,本地部署大模型并建立本地知识库需要按照上述步骤进行操作和配置,同时不断实践和探索,以达到理想的效果。
2025-04-10