快速学习智能代理(agent)需要一个系统化的学习计划,涵盖理论、实践和最新研究进展。以下是一个快速学习路径,分为基础理论、工具和实践、以及进阶学习三个部分。
通过系统化的学习路径,从基础理论到实际操作,再到进阶学习,你可以快速掌握智能代理的知识和技能。持续学习和实践,关注最新研究进展,将有助于你在这一领域不断提升。
智能体是一种自主系统,它可以通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在LLM支持的自主Agent系统中,LLM充当Agents的大脑,并辅以几个关键组成部分:规划子目标和分解:Agents将大型任务分解为更小的、可管理的子目标,从而能够有效处理复杂的任务。反思和完善:Agents可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,从而提高最终结果的质量。记忆短期记忆:所有的上下文学习都是利用模型的短期记忆来学习。长期记忆:这为Agents提供了长时间保留和回忆(无限)信息的能力,通常是通过利用外部向量存储和快速检索来实现。工具使用Agents学习调用外部API来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。
结合我们“一人公司”的愿景,我们需要大量的智能体(数字员工)替我们打工.而未来的AI数字员工,会以大语言模型为大脑,串联所有已有的工具和新造的AI工具.@胖纸非胖纸:数字员工(agent)=学历(大模型)+察言观色(观察)+逻辑思维(推理)+执行(SOP)创造者的学习也依照这个方向,用大模型和Agent模式把工具串起来,着重关注在创造能落地AI的agent应用.大模型的开发研究和演进,就交给学术界和大厂吧.?
智能体可以根据其复杂性和功能分为几种类型:1.简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动。不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。1.基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模。能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。1.目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标。能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。1.效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。1.学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能。学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。