Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

吴恩达 prompt

Answer

吴恩达(Andrew Ng)是一位在人工智能领域享有盛誉的科学家和教育者,他在机器学习、统计学和人工智能领域做出了重要贡献,并且是在线教育平台 Coursera 的联合创始人。以下是关于他的一些信息:

  1. 学术背景:吴恩达曾在斯坦福大学担任副教授,并领导了谷歌的大脑项目(Google Brain)。此外,他还曾担任百度公司首席科学家,并领导百度研究院。
  2. 研究领域:吴恩达以其在深度学习和大规模机器学习系统方面的研究而闻名,他在这些领域的工作推动了人工智能技术的商业应用和普及。他还是多个人工智能和机器学习开源项目的倡导者,包括 TensorFlow 和 Caffe。
  3. 教育贡献:除了在学术界和工业界的贡献,吴恩达还致力于普及人工智能教育。他教授的机器学习课程是斯坦福大学和 Coursera 上最受欢迎的在线课程之一,吸引了全球数百万学生的参与。通过他的教学和研究工作,吴恩达对人工智能领域的发展产生了深远的影响。

总的来说,吴恩达在人工智能领域的研究和教育贡献使他成为该领域的重要人物之一。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:吴恩达是谁?

吴恩达(Andrew Ng)是一位在人工智能领域享有盛誉的科学家和教育者。他在机器学习、统计学和人工智能领域做出了重要贡献,并且是在线教育平台Coursera的联合创始人。吴恩达曾在斯坦福大学担任副教授,并领导了谷歌的大脑项目(Google Brain)。此外,他还曾担任百度公司首席科学家,并领导百度研究院。吴恩达以其在深度学习和大规模机器学习系统方面的研究而闻名,他在这些领域的工作推动了人工智能技术的商业应用和普及。他还是多个人工智能和机器学习开源项目的倡导者,包括TensorFlow和Caffe。除了在学术界和工业界的贡献,吴恩达还致力于普及人工智能教育。他教授的机器学习课程是斯坦福大学和Coursera上最受欢迎的在线课程之一,吸引了全球数百万学生的参与。通过他的教学和研究工作,吴恩达对人工智能领域的发展产生了深远的影响。内容由AI大模型生成,请仔细甄别。

目录:吴恩达讲Prompt

谷歌/百度AI部门负责人吴恩达和OpenAI合作推出了免费的Prompt Engineering(提示工程师)课程。课程主要内容是教你书写AI提示词,并且最后会教你利用GPT开发一个AI聊天机器人。原版网址:https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/B站版本:【合集·AI Course-哔哩哔哩】https://b23.tv/ATc4lX0https://b23.tv/lKSnMbB翻译版本:[来自twitter博主歸藏](https://twitter.com/op7418?s=21&t=F6BXooLyAyfvHbvr7Vw2-g)推荐直接使用Jupyter版本学习,效率更高:https://github.com/datawhalechina/prompt-engineering-for-developers/吴恩达和Open AI合作的提示工程课程一共9集全部已经翻译完成,并且改成了双语字幕,字幕文件也已经上传了。视频下载地址:https://pan.quark.cn/s/77669b9a89d7OpenAI开源了教程:https://islinxu.github.io/prompt-engineering-note/Introduction/index.html纯文字版本:https://github.com/zard1152/deepLearningAI/wiki[ChatGPT提示工程中文翻译版(仅用于学习分享)](https://fieghf3pzz6.feishu.cn/wiki/MazPw5eo5iW95gkvWAhcSTxdnSc)

目录:吴恩达讲Prompt

有两类大语言模型:基础LLM:基础大型语言模型经过训练,可以根据文本预测下一个词。训练数据通常基于大量来自互联网和其他来源的数据,以推断出最有可能出现的下一个词。指令微调LLM:指令调优的大型语言模型是当前大型语言模型研究和实践的主要发展方向。指令调优的大型语言模型经过训练,能够遵循指令。为了让系统更有帮助并遵循指令,通常会进一步使用一种名为人类反馈强化学习(RLHF)的技术来优化。因为指令调优的大型语言模型经过训练,更有助于提供有用的、无害的回答。

Others are asking
PromptEnhancer
以下是关于 PromptEnhancer 的相关信息: PromptEnhancer 是一款自动生成/优化 prompt 的工具。 在对最流行的“AI 提示生成器”的比较分析中,针对“作为一名 IT 学生,为我的高级项目提出想法;我想要关于学生帮助大学学生的想法”这一测试种子提示,PromptEnhancer 在实验中的成绩为 4 胜 0 负。 相关链接:https://flowgpt.com/prompt/sbuYQwUq_8v8fafR5zJuB
2025-04-20
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
整理会议纪要的prompt
以下是一些关于整理会议纪要的 prompt: 【?会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼。 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 CEO 秘书会议纪要:专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。需严格遵守信息准确性,不对用户提供的信息做扩写,仅做信息整理,将一些明显的病句做微调。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
有什么 prompt engineering 的好材料
以下是一些关于 prompt engineering 的好材料: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: Claude 3.7 核心提示词相关: 您可以在中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 一泽 Eze 整理的相关学习资料: Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library 基本概念: 简单的提示词可以包含指令、问题等信息,也可以包含上下文、输入或示例等详细信息,以更好地指导模型获得更好的结果。 当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同的角色来构建 prompt,system 有助于设定 assistant 的整体行为。 提示工程就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。
2025-04-12
吴恩达
吴恩达(Andrew Ng)是在人工智能领域极具声誉的科学家和教育者。 他在机器学习、统计学和人工智能领域贡献卓著: 曾在斯坦福大学任副教授,领导过谷歌的大脑项目(Google Brain)。 担任过百度公司首席科学家并领导百度研究院。 以深度学习和大规模机器学习系统的研究闻名,推动了人工智能技术的商业应用和普及,是多个人工智能和机器学习开源项目(如 TensorFlow 和 Caffe)的倡导者。 致力于普及人工智能教育,其教授的机器学习课程在斯坦福大学和 Coursera 上广受欢迎,吸引全球数百万学生参与。 在红杉 AI Ascent 2024 会议中,吴恩达是与会的人工智能领导者之一。 在相关研究中,吴恩达逐渐意识到利用大量训练数据与快速计算能力的重要性,其想法在一些论文中得到支持。 内容由 AI 大模型生成,请仔细甄别。
2025-04-12
吴恩达
吴恩达(Andrew Ng)是人工智能领域享有盛誉的科学家和教育者。他在机器学习、统计学和人工智能领域贡献显著,是在线教育平台 Coursera 的联合创始人。 曾在斯坦福大学任副教授,领导过谷歌的大脑项目(Google Brain),还曾担任百度公司首席科学家并领导百度研究院。以深度学习和大规模机器学习系统方面的研究闻名,推动了人工智能技术的商业应用和普及,是多个人工智能和机器学习开源项目(如 TensorFlow 和 Caffe)的倡导者。 他致力于普及人工智能教育,其教授的机器学习课程在斯坦福大学和 Coursera 上极受欢迎,吸引全球数百万学生参与。通过教学和研究工作,对人工智能领域发展影响深远。 吴恩达还参与了红杉 AI Ascent 2024 会议。此外,他有一门生成式 AI 入门视频课程: 。 内容由 AI 大模型生成,请仔细甄别。
2025-04-10
吴恩达是谁
吴恩达(Andrew Ng)是在人工智能领域极具声誉的科学家和教育者。 他在机器学习、统计学和人工智能领域贡献显著: 曾在斯坦福大学任副教授,领导过谷歌的大脑项目(Google Brain)。 担任过百度公司首席科学家并领导百度研究院。 以深度学习和大规模机器学习系统的研究闻名,推动了人工智能技术的商业应用和普及,是多个人工智能和机器学习开源项目(如 TensorFlow 和 Caffe)的倡导者。 他还是在线教育平台 Coursera 的联合创始人,其教授的机器学习课程在斯坦福大学和 Coursera 上广受欢迎,吸引全球数百万学生参与。 此外,他还是 AI Fund 的成员,并在红杉 AI Ascent 2024 会议上参与交流。他还出版了新书《How to Build Your Career in AI》,为想进入 AI 领域的人士提供职业发展建议。
2025-04-08
吴恩达最近推出了哪些课程?
吴恩达最近推出的课程包括: 1. 与 OpenAI 合作推出的免费的 Prompt Engineering(提示工程师)课程。 主要内容是教书写 AI 提示词,并利用 GPT 开发一个 AI 聊天机器人。 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本:【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 、https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本 2. 2023 年 8 月 24 日上线的最新短课程: 《》,课程内容包括了解何时对 LLM 应用微调、准备数据以进行微调、根据自己的数据训练和评估 LLM。 《》,深入浅出地介绍了基于大语言模型的 AI Agents,从记忆检索到决策推理,再到行动顺序的选择,真实展现了 Agent 的智能化进程。
2025-03-27
吴恩达总结了四种AI Agent的设计模式: 1.反思模式(Reflection): 2.工具使用模式: 3.规划模式: 4.多智能体协作模式:
吴恩达总结了以下四种 AI Agent 的设计模式: 1. 反思模式(Reflection):让 Agent 审视和修正自己生成的输出。例如,在编写代码时,可让大模型检查代码的准确性和结构规范性,并不断优化。 2. 工具使用模式(Tool Use):通过使用外部工具和资源,如 LLM 生成代码、调用 API 等进行实际操作。 3. 规划模式(Planning):让 Agent 分解复杂任务并按计划执行。 4. 多智能体协作模式(Multiagent Collaboration):多个 Agent 扮演不同角色合作完成任务。 如果您想更深入了解这些设计模式,可以参考以下文章:https://waytoagi.feishu.cn/wiki/SPNqwJkmQiyVfGkS8zocMSZcnYd
2025-03-19
吴恩达中文课程
以下是关于吴恩达中文课程的相关信息: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版等。 目录: https://github.com/zard1152/deepLearningAI/wiki 介绍: 有两类大语言模型:基础 LLM 和指令微调 LLM。基础 LLM 经过训练可根据文本预测下一个词,指令微调 LLM 经过训练能遵循指令,为让系统更有帮助并遵循指令,通常会进一步使用人类反馈强化学习(RLHF)技术来优化。 原则与技巧: 两个提示的关键原则:尽可能保证下达的指令“清晰、没有歧义”;给大模型思考的时间,以及足够的时间去完成任务。
2025-03-05