Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI如何帮助前端工程师

Answer

作为一名前端开发工程师,AI技术可以显著提高你的工作效率、提升用户体验和加速开发流程。以下是一些具体应用和方法,展示AI如何在前端开发的不同方面帮助你:

1. 代码自动生成和优化

a. 代码补全和建议

  • GitHub Copilot:基于OpenAI Codex的智能编程助手,可以实时提供代码补全、函数建议和代码片段,大大提高编码效率。
  • TabNine:AI驱动的代码补全工具,支持多种编程语言,能够根据上下文智能预测和补全代码。

b. 自动生成代码

  • Sketch2Code:微软提供的工具,可以将手绘草图转化为HTML代码,快速实现UI设计到代码的转换。
  • UIzard:AI驱动的设计工具,可以将设计稿自动转化为前端代码,包括HTML、CSS和JavaScript。

2. 用户体验和界面优化

a. A/B测试和优化

  • Optimizely:基于AI的A/B测试平台,可以自动分析用户行为数据,优化用户界面和交互设计,提高转化率。
  • Google Optimize:利用机器学习分析用户行为,提供数据驱动的界面优化建议和测试方案。

b. 个性化推荐

  • Algolia:AI驱动的搜索和推荐引擎,可以在网站中实现个性化内容推荐,提高用户参与度和满意度。
  • Dynamic Yield:提供个性化内容推荐和用户体验优化,利用AI分析用户行为,动态调整界面内容。

3. 数据分析和可视化

a. 用户行为分析

  • Mixpanel:提供基于AI的用户行为分析,帮助理解用户在应用中的行为路径,优化用户体验设计。
  • Hotjar:利用AI分析用户点击、滚动和浏览行为,提供热图和录屏分析,帮助优化界面设计。

b. 数据可视化

  • Chart.js 和 D3.js:结合AI分析数据趋势,自动生成动态和交互式数据可视化图表,提升数据展示效果。
  • Tableau:集成AI分析功能,可以自动生成可视化报告和仪表板,帮助快速理解和展示数据。

4. 测试和调试

a. 自动化测试

  • Selenium 和 Cypress:利用AI优化自动化测试脚本,减少手动测试时间,提高测试覆盖率和效率。
  • Testim:AI驱动的测试平台,可以自动生成和维护测试脚本,检测界面和功能问题,优化测试流程。

b. 错误检测和修复

  • Sentry:实时监控和报告前端错误,利用AI分析错误原因,提供修复建议,减少调试时间。
  • DeepCode:AI驱动的代码审查工具,自动检测代码中的潜在问题和漏洞,提供修复建议。

5. 设计和原型

a. 设计辅助

  • Figma:集成AI工具,可以自动生成设计元素、布局建议和风格一致性检查,提升设计效率。
  • Adobe XD:利用AI工具进行自动布局调整、设计建议和资源管理,快速实现设计原型。

b. 生成对抗网络(GAN)

  • Runway ML:提供基于GAN的设计工具,可以自动生成图像、图标和其他设计元素,提升创意设计效果。
  • Artbreeder:利用GAN生成和编辑图像,创建独特的设计元素和背景图片,丰富界面设计。

6. 内容创作和管理

a. 生成和编辑内容

  • OpenAI GPT-3:生成和编辑文案、博客内容和用户评论,提高内容创作效率和质量。
  • Wordsmith:AI驱动的内容生成工具,自动生成产品描述、新闻文章和营销文案。

b. 内容管理

  • Contentful:AI集成的内容管理系统,自动组织和推荐内容,提升内容管理效率。
  • ButterCMS:提供AI驱动的内容优化和推荐功能,帮助创建和管理高质量的内容。

实践中的应用示例

  1. 自动生成页面布局:使用Sketch2Code将设计草图转化为HTML/CSS代码,快速实现页面布局。
  2. 个性化内容推荐:在电商网站中集成Algolia推荐引擎,根据用户行为推荐相关产品,提高用户转化率。
  3. 自动化测试和错误检测:使用Testim自动生成测试脚本,利用Sentry实时监控前端错误,提升测试效率和代码质量。
  4. 智能文案生成:利用GPT-3生成营销文案和博客内容,减少手动编写时间,提高内容创作效率。

工具和平台

  • GitHub Copilot:智能代码补全和建议。
  • Sketch2Code:设计草图转化为HTML/CSS代码。
  • Algolia:搜索和推荐引擎。
  • Mixpanel 和 Hotjar:用户行为分析和可视化。
  • Sentry 和 Testim:错误检测和自动化测试。
  • Figma 和 Adobe XD:设计和原型工具。

总结

AI技术在前端开发中具有广泛的应用前景,可以显著提高代码编写效率、优化用户界面、加速测试和调试流程,以及提升内容创作质量。通过合理应用AI工具,你可以在日常工作中实现更高的效率和创新能力,为用户提供更优质的体验。

Content generated by AI large model, please carefully verify (powered by aily)

References

问: 有没有写代码或辅助编程的 AI 产品?

当然有,以下是一些可以帮助你编程、生成代码、debug的AI工具:1.GitHub Copilot:由全球最大的程序员社区和代码托管平台GitHub联合OpenAI和微软Azure团队推出的AI编程助手。它支持和兼容多种语言和IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。2.通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。3.CodeWhisperer:亚马逊AWS团队推出的AI编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。4.CodeGeeX:智谱AI推出的开源的免费AI编程助手,该工具基于130亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。5.Cody:代码搜索平台Sourcegraph推出的一款AI代码编写助手,该工具借助Sourcegraph强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。

AIGC Weekly #12

近年来,编程世界一直在快速发展,将人工智能集成到开发过程中是最令人兴奋的进步之一。像ChatGPT这样的人工智能工具使外包编程工作比以往任何时候都更容易,这对前端开发的未来具有重大意义。因此,探索人工智能如何影响编程领域,特别是前端工程至关重要。[中文翻译版本在这里](https://mp.weixin.qq.com/s/6x89K0W0JZ9PepiYyKHNyQ)。

齐码蓝:你(或孩子)还需要学编程吗?AI编程Master GPTs

1.编辑React组件:在client/src目录下,你会找到一个名为App.js的文件,这是你的React应用的主组件。你可以开始通过修改App.js来构建你的界面。2.运行前端开发服务器:在client目录下运行以下命令,启动开发服务器:1.这将自动在浏览器中打开一个新标签,显示你的应用。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
我是一个前端开发人员,在工作中,我可以使用哪些ai工具提效
以下是一些适合前端开发人员在工作中提效的 AI 工具: 1. 辅助编程工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的代码编写助手,借助强大的代码语义索引和分析能力。 CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手。 Codeium:通过提供代码建议等帮助提高编程效率和准确性。 更多辅助编程 AI 产品,可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 测试用例生成:AI 在生成测试用例方面具有显著优势,能自动化和智能化生成高覆盖率的测试用例,减少人工编写时间和成本。通过合理应用 AI 工具,可提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 3. 网页原型图生成工具: 即时设计:https://js.design/ ,可在线使用的「专业 UI 设计工具」,注重云端文件管理和团队协作。 V0.dev:https://v0.dev/ ,Vercel Labs 推出的 AI 生成式用户界面系统,能通过文本或图像生成代码化的用户界面。 Wix: ,用户友好,无需编码知识即可创建和自定义网站,提供广泛模板和设计选择,以及多种功能。 Dora:https://www.dora.run/ ,通过一个 prompt,借助 AI 3D 动画生成强大网站。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
帮我写一段cursor的user rules,符合前端开发
以下是关于 Cursor 的 User Rules 相关内容,适用于前端开发: Cursor Rules 简单来说是为 Cursor 做角色定位,使其以更专业的角色服务。它允许开发者为 AI 助手设置特定指导原则和行为模式,让 AI 在生成代码、提供建议和响应查询时能更好适应开发者的编码风格和项目需求。 设置通用规则的步骤如下: 1. 点击界面右上角的小齿轮图标。 2. 在 cursor settings 中找到 Rules。 3. 将相关文本拷贝到 User Rules 后,关掉页面即可。 当您从新手阶段进阶,希望进行更专业的 APP 开发、前后端项目时,可以通过以下方式获取更专业的 Cursor Rules: 1. 访问下方的 github 项目:https://github.com/PatrickJS/awesomecursorrules 。 2. 使用 https://cursor.directory/generate ,根据项目重点直接生成。 设置好 Cursor Rules 后,就可以开始创作第一个小作品,比如一个打砖块的小游戏。首先在右侧对话框中输入本次项目的内容(可以非常口语化),使用 claude3.7 模型等待代码生成完毕。可以看到左侧文件夹生成多个文件,中间显示 AI 生成的不少代码,右边是 AI 告知的互动生成内容。点击右下方的 Accept all 使代码生效。若想查看项目效果,直接跟 AI 说“运行项目”,点击 AI 提示的 Run command 会跳转到预览页面。如果玩起来有问题(如操控感不好、不美观),可以让 AI 进一步帮助美化。 另外,在某些情况下,比如导入 cursor 时,需要上传到 github 并下载到本地,在设置里把 user rules 改成“always respond in 中文”,在 terminal 里输入“npm i”“npm run dev”等操作。
2025-03-31
如何运用Trae设计实现前端代码并转化为原型图
以下是运用 Trae 设计实现前端代码并转化为原型图的相关内容: 1. 控制按钮(开始、暂停、重新开始)和游戏说明。 2. 生成任务清单应用:在输入框中输入“使用 Web 技术开发一个任务清单应用”,可得到一个朴素但功能俱全的任务清单应用。 3. 根据 UI 设计图自动生成项目代码:从站酷上找设计图,输入提示如“使用 html 技术实现如图大屏页面”,页面虽不完美但可调整,如“调整一下,给图表设置合适的宽高比例,自适应页面大小”,能使图表大小正常。 总结: Trae 表现可圈可点,具有高效代码生成能力,能在几分钟内生成完整框架,代码结构清晰且功能齐全,能自动处理依赖项和运行命令。 支持多技术栈,从 HTML5、响应式 CSS 布局到 Echarts 图表实现,对 Web 技术掌握良好,生成的代码可直接运行且无明显语法错误。 具有动态调整潜力,虽未完美复现设计图,但能根据用户反馈快速调整样式,自适应布局的实现展现了迭代能力。 现在的 AI 越来越强大,小白不需要懂代码也能用 AI 编程工具进行程序开发,这让程序员感到深深的危机感。
2025-03-21
有没有根据描述自动生成前端代码的工具?
以下是一些根据描述自动生成前端代码的工具: 1. Vercel v0:已向所有人开放,能通过文本或图像生成代码化的用户界面。例如群友“嘴替笔记苏谨深”试用效果不错,可生成标准安卓的天气预报截图,还能输出 react 和 html 两种格式的代码。 2. ChatGPT 结合相关操作:可将后端定义的接口文档转换为前端项目中的 Mock 数据,提升效率。 3. AIGC 工具 V0:现在支持从外部 API 获取数据,v0 Premium 用户可将生成的页面发布到自定义的子域名。 您可以根据具体需求选择适合的工具。
2025-03-12
CRM,开发(网站前端和后端开发,低代码RPA开发,Mendix开发) 这些角色在使用AI的时候会涉及哪些AI工具,帮我分别具体列举出来
目前在 CRM 以及网站前端和后端开发、低代码 RPA 开发、Mendix 开发等角色中,常用的 AI 工具包括但不限于以下几种: 对于 CRM 角色: 智能客服工具,如基于自然语言处理的聊天机器人,能够自动回答客户常见问题,提高服务效率。 对于网站前端开发角色: 代码自动生成工具,能够根据设计稿或需求描述生成前端代码框架。 智能设计辅助工具,帮助生成页面布局和设计元素的建议。 对于网站后端开发角色: 代码漏洞检测工具,利用 AI 算法检测代码中的潜在安全漏洞。 智能代码优化工具,对后端代码进行性能优化建议。 对于低代码 RPA 开发角色: 流程自动化智能推荐工具,根据业务流程提供自动化的建议和方案。 对于 Mendix 开发角色: 智能组件推荐工具,根据开发需求推荐合适的组件。 需要注意的是,具体使用哪些 AI 工具还会因个人需求、项目特点和技术环境等因素而有所不同。
2025-03-07
如何成为提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在通过精心构造的提示引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,以便理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例,比如在市场营销类和商业类中,有自动优化 Prompt 的案例,如 JackeyLiu 熟悉的转化步骤包括: 1. 角色和能力:基于问题思考 chatGPT 最适合扮演的角色,应是该领域最资深的专家,适合解决问题。 2. 上下文说明:思考提出问题的原因、背景和上下文。 3. 任务陈述:基于问题进行陈述。 提示词工程师是一个新兴职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2025-04-15
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
我是一名硬件工程师 如何让ai快速理解我的原理图并优化
以下是关于让 AI 理解原理图并优化的相关知识: 1. 在 AI 硬件发展方面,存算一体的方式是未来的趋势。对比人脑,其能耗低,使用存算一体的芯片有望诞生全新算法,运行几百亿参数的大模型的最佳架构也是存算一体,因其避免了数据搬运。 2. 大模型在通用知识方面较强,但对专业领域知识了解不足。将大模型与私域知识结合有 5 种方法:重新训练(拿私域数据重新训练大模型)、微调(拿私有数据 finetuning 大模型)、RAG(将知识库里的知识搜索送进大模型)、关键词工程(写好提示词)、加长 Context(当 Context 能无限长时,可将知识和记忆 prefill 到 Context 里)。学术界中,做深度学习的人偏向于用 RAG,做过搜索的人偏向于用 Long Context。 3. 在 Trae 优化代码方面,当请求“帮我把当前的代码给优化一下”时,请求先到 Trae 自己的服务器,服务器再请求对应模型返回数据。不会发送本地代码文件,只发送“文件名”加“问题”,且在最开始 Trae 打开项目进行索引构建时,已在云端构建好项目文件。 对于您作为硬件工程师让 AI 快速理解原理图并优化的需求,目前可能需要进一步探索如何将原理图的特征和相关信息转化为适合 AI 处理和理解的形式,或许可以借鉴上述将专业知识与大模型结合的方法,以及利用高效的数据库和模型架构来提高处理效率。
2025-03-23
懂编程但是不了解大模型的工程师如何系统的学习深度学习?
对于懂编程但不了解大模型的工程师,系统学习深度学习可以参考以下路径: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程推荐吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 参考相关资源,如 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 运用相关开源工具,如 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为了更好地理解相关技术原理和建立框架,还可以了解以下内容: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。
2025-03-13
java程序员怎么转型大模型算法工程师
以下是为 Java 程序员转型大模型算法工程师提供的一些建议: 1. 学习相关理论知识:了解大模型的基本原理,包括模型架构、预训练及微调、部署及推理等。 2. 掌握技术工具:熟悉 LLM 相关技术,如 Transformer、Prompt Tuning、RLHF、Langchain、Agent、MOE、RAG 等。 3. 提升编程能力:熟悉算法和数据结构,具备扎实的编程基础,尤其是 Python 开发。 4. 积累项目经验: 可以参考大圣的全网最适合小白的 Llama3 部署和微调教程,该教程手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调模型,并了解微调的意义和概念。但需注意,此教程不会讲解微调的技术性原理及文中用到的 Python 代码。 关注招聘信息,例如序智科技和中国移动设计院的招聘需求,了解大模型算法工程师的职责和要求,针对性地提升自己的能力。 5. 增强相关技能: 对至少 2 个框架具备源码级别的理解和优化能力,包括但不限于 Langchain、XAgent、ChatDev、DsPy、AutoGPT、BabyAGI、MetaGPT。 熟悉 GPT Function Calling 原理,熟练掌握 Prompt Engineering。 对预训练/微调(尤其是微调)熟练,熟练掌握 huggingface/deepspeed(或其他框架)。 对多模态大模型有一定了解,精通低代码平台会是加分项。 您可以根据自身情况,有针对性地进行学习和实践,逐步实现从 Java 程序员向大模型算法工程师的转型。
2025-03-12
假如你是一名测试工程师,要写一个关于《AI智能体输入输出验证》专利申请书,申请书的内容包括以下几点: 1、发明名称(一种xxxxxxxx算法/架构/设计/外观等等等等) 2、发明背景技术 3、具体的技术方案描述 4、本发明的有益效果
以下是为您生成的关于《AI 智能体输入输出验证》的专利申请书内容: 发明名称:一种基于 Coze 工作流的 AI 智能体输入输出验证算法 发明背景技术: 在当前的 AI 应用中,构建和测试智能体的功能至关重要。特别是在处理复杂的任务,如生成思维导图时,需要确保输入和输出的准确性和有效性。然而,现有的技术在配置子任务节点和验证其可用性方面存在不足,导致效率低下和结果不稳定。 具体的技术方案描述: 1. 对于生成思维导图的任务,首先确定处理方式为“单次”,因为一次精读任务仅需生成一张思维导图。 2. 在输入方面,<generateTreeMind>插件节点仅需设置{{query_text}}变量,格式为 string 字符串,通过引用“标题、导语、大纲”节点的{{enTreeMind}}变量来提供输入。 3. 在输出方面,观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来确定所需的字段。对于生成图片格式的思维导图,确定 pic 为所需的输出。 4. 完成任何一个节点的配置后,进行试运行测试。具体步骤包括:点击「测试该节点」,按格式要求输入待测试的内容(对于 array 等其他格式,自行对话 AI 或搜索网络确认格式要求),点击「展开运行结果」,检查输入、输出项是否有误。若有误,依次检查“测试输入内容”、“节点配置”以及优化“提示词”,以提升对生成内容的约束力。 本发明的有益效果: 1. 提高了 AI 智能体在处理生成思维导图等任务时输入输出配置的准确性和效率。 2. 通过明确的步骤和规范的测试流程,有效减少了错误和不确定性,提升了智能体的稳定性和可靠性。 3. 能够更好地满足用户在复杂任务中的需求,为相关领域的应用提供了更优质的解决方案。
2025-03-04
我是一个实体店家,我怎么能利用AI产生内容进而帮助我在流量平台拓客
以下是一些利用 AI 为实体店在流量平台拓客的方法和思路: 1. 借助抖音平台:利用抖音对实体商家的流量扶持,购买 AI 抖音发广告的软件。这需要懂软件开发的技术人员,并且熟悉抖音。 2. 利用 AI 私域做客户培育/用户旅程:通过 AI 软件自动跟进和培育客户,需求是懂软件开发的技术人员且熟悉微信。 3. 打造特定领域的 AI 工具:比如针对法律、健康、财务、教育、销售、HR 等领域,开发如“AI 合同助手”“AI 健康管家”“AI 课程生成器”“AI 销售助理”等垂类工具。 4. 作为引流者:把 AI 工具做成“公众号插件”“小程序入口”或“微信机器人”进行推广,获取分成。 5. 参考优秀作品:如商业综合体 AI 伴侣、客流诊断师、跨境商品不求人、公私域全流程内容规划师、公众号 10W+爆文工厂、营销内容文案合规检查、提示词定制神器、Nicole 咖啡门店分析师、3C 软文文案撰写、网购评论助手、万能 AI 营销助手、贴心平替推荐精灵、产品一键生成一篇高质量的知乎种草文、One thing AI 目标达成教练、润物等,从中获取灵感和思路。
2025-04-15
ai可以和哪些领域结合,让普通的人的生活得到帮助
AI 可以与以下领域结合,为普通人的生活提供帮助: 1. 教育培训: 借助大型语言模型,人工智能生成的角色可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。 数字教师可以实现一对一辅导,根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,缓解教育资源不平等的问题。 人工智能生成的虚拟角色也可以是数字陪伴,促进儿童成长。 2. 娱乐和休闲: 在影视行业,AGI 时代每个人都可以让 AI 根据自己喜好“量身定制”电影或剧集,甚至互动式地发展剧情。 在游戏领域,AGI 可以创造出高度逼真的虚拟角色,与玩家互动,使游戏世界更加生动。 在音乐、美术创作方面,AGI 能与人类艺术家协作或作为创作者助理,普通人也可以通过简短描述让 AGI 生成作品。 3. 日常生活: AGI 可以读取用户日程和邮件,自动为用户安排最优路线、预订餐厅、购买日用品等。 在购物时,AI 可以根据用户的尺寸和喜好筛选商品清单,甚至替用户做决定。 但在享受这些便利的同时,也需要警惕过度依赖带来的问题,如人类判断力和独立思考能力的退化。
2025-04-14
我是医科大学的本科学生,我现在想用Ai帮助我书写论文和报告,我应该怎么系统学习?
以下是一些系统学习利用 AI 帮助书写论文和报告的建议: 一、了解常用的 AI 工具和平台 1. 文献管理和搜索 Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作 Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析 Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式 LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测 Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 二、学习使用 AI 辅助撰写论文和报告的方法 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。 三、注意事项 1. AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 保持科学的态度和方法,遵循科学伦理原则。 3. 了解现阶段 AI 在教育领域应用的局限性,如知识适配的层次性问题、教育应用的安全性考量等。 希望以上内容对您有所帮助。
2025-04-14
我想要一个助手,能帮助我快速计算式子
如果您想要一个能帮助快速计算式子的助手,可以通过以下步骤实现: 1. 搭建示例网站: 创建应用:点击打开提供的函数计算应用模板,参考相关图示选择直接部署,并填写获取到的百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 2. 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消相应位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果,此时网站的右下角会出现 AI 助手图标,点击即可唤起 AI 助手。 此外,零代码自建决策助手可以帮您解决生活中的决策问题,决策链设计包括: 1. 加权得分计算:将每个选项在各个标准上的得分与相应的权重相乘,然后求和,得出每个选项的总加权得分。 2. 机会成本分析:考虑选择每个选项时可能放弃的其他机会。 3. 简单情景分析:为每个选项构想最佳和最坏的情况。 4. 决策矩阵分析:将前面步骤的分析结果汇总到一个表格中,包括预期收益、机会成本、净收益、长期影响和风险评估。 决策阶段包括: 1. 敏感性分析:通过调整不同因素的权重,检验决策是否稳健。 2. 情感检验:反思个人对每个选项的情感反应,并考虑其与理性分析的一致性。 3. 提供最终决策建议:基于前面的所有分析,提出一个综合的建议。 案例——帮你选工作: 假设您是一名在职的产品经理,想跳槽并拿到两个不错的 offer,向决策助手求助。整个流程始于您向决策助手提出问题,决策助手随即要求您提供 offer 的基本信息。在您提供完信息后,决策助手开始定义基本的评估标准,并让您审核,还会根据您的喜好和目标给出权重分配的建议。在您认可权重分配后,决策助手对每个选项进行评分,评分采用 1 到 10 分的制度,涵盖所有评估标准。评分完成后,决策助手会整理出一个清晰的表格,包含各项评估标准的权重以及每个选项在各个标准下的得分。
2025-04-12
那如果自己尝试制作类似工具,你是否可以提供一些帮助呢?
以下是关于自己尝试制作类似工具的一些帮助信息: 制作网站的 AI 工具: Wix ADI: 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 Bookmark: 网址:https://www.bookmark.com/ 特点:AIDA 通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 Firedrop: 网址:https://firedrop.ai/ 特点:Sacha 是其 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 The Grid: 网址:https://thegrid.io/ 特点:Molly 是其 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 在扣子调用已有的 API 制作插件: 1. 点击个人空间,选择插件,点击创建插件。 2. 创建插件: 插件名称:中文,根据插件需求起名。 插件描述:告诉观众插件的用途和使用方法。 3. 插件工具创建方式: 云侧插件基于已有服务创建:使用现成的 API 来创建插件,选择后会跳出必填项“插件 URL”,要填入所使用 API 的 URL。 云侧插件在 Coze IDE 中创建:使用 Coze 的服务器写代码来直接搭建 API(支持 Python 和 Node.JS)。 4. 在新的界面点击创建工具,填入第一个插件工具的基本信息: 工具名称:只能使用字母、数字和下划线来命名。 工具描述:根据工具的使用方法、功能填写,提醒用户如何使用。 工具路径:填写对应完整的 API 以/开始,如果后面使用 path 的方式传参,则可以使用“{}”包裹的方式把变量包含在其中。 请求方法:根据 API 的调用方式选择对应的请求方法。 5. 配置输入参数:点击新增参数,把所有需要使用的参数填写进工具。 开发视角中使用 ChatGPT 的案例: 制作 LaTeX 图表与表格:经常使用 LaTeX 编写文章和内部文件,ChatGPT 能够编写 LaTeX 代码,根据描述或原始数据创建表格和图形,还能解决布局问题和提供建议。可以将图形草图截图发送给 ChatGPT 让其转换成 LaTeX 代码,虽然不是百分之百准确,但能大大节省时间。
2025-04-10
如何借助AI帮助自己通过职称考试
很抱歉,目前知识库中没有关于如何借助 AI 帮助自己通过职称考试的相关内容。但一般来说,您可以考虑以下几种方式利用 AI 来辅助备考: 1. 使用智能学习工具,如具有个性化学习计划制定功能的 APP,根据您的知识水平和考试要求为您生成专属的学习路径。 2. 借助语言模型类的 AI 工具,如 ChatGPT 等,向其咨询考试重点、难点,获取学习建议和解题思路。 3. 利用 AI 智能题库,进行有针对性的刷题练习,通过智能分析您的答题情况,找出薄弱环节进行强化。 4. 运用 AI 辅助的笔记整理工具,帮助您更高效地梳理知识点,形成系统的知识体系。 希望以上建议对您有所帮助。
2025-04-08