Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

专门训练AI专属模型的人员怎么称呼?

Answer

专门训练 AI 专属模型的人员通常被称为“AI 工程师”或“机器学习工程师”。他们负责设计、开发和优化 AI 模型,以满足特定的应用需求。AI 工程师需要具备深厚的数学和计算机科学知识,以及丰富的机器学习和深度学习经验。他们通常使用各种工具和技术,如 Python、TensorFlow、PyTorch 等,来训练和部署 AI 模型。此外,AI 工程师还需要与其他团队成员合作,如数据科学家、产品经理和开发人员,以确保 AI 模型能够与其他系统和应用程序集成,并为用户提供价值。

Content generated by AI large model, please carefully verify (powered by aily)

References

OpenAI 真正想要什么 | WIRED

Radford和他的合作者给他们创建的模型起的名字是“generatively pretrained transformer”——GPT-1的缩写。最终,这个模型被通称为“生成式AI”。为了建立这个模型,他们收集了7000本未出版的书籍,其中很多都是浪漫、奇幻和冒险类型的书籍,并在Quora问答以及初中和高中考试的数千段文章中对其进行了完善。总之,该模型包含1.17亿个参数或变量。该模型在理解语言和生成答案方面的表现优于之前的所有模型。但最引人注目的结果是,在处理如此大量的数据后,模型能够提供超出其训练的结果,在全新的领域提供专业知识。这些计划外的机器人能力被称为“零样本”。它们仍然令研究人员感到困惑——这也是该领域许多人对这些所谓的大型语言模型感到不安的原因。Radford还记得在OpenAI办公室的一个深夜。“我只是一遍又一遍地说:‘嗯,这很酷,但我很确定它做不了X。’然后我会快速编写一个评估代码,果然,它可以做到X。”

周鸿祎免费课AI系列第二讲-企业如何拥抱AI

那我们下面会给一个实践的例子,用百亿参数的这种垂直场景大模型,如果训的好,我注意我这个话比较狡猾,在一个专垂直场景上,他的专业能力可以超越GPT 4,我没有说全面能力,是让我们训的这种叫专业大模型,不具备全面能力。他可能写,有的时候写,比如说写某些文章不行,写诗不行的,解奥数题不行、算脑筋急转弯的问题不行,但是他就能够解决你的单项,它要成为一个单项冠军。

周鸿祎免费课AI系列课程第二讲-企业如何拥抱AI

那我们下面会给一个实践的例子,用百亿参数的这种垂直场景大模型,如果训的好,我注意我这个话比较狡猾,在一个专垂直场景上,他的专业能力可以超越GPT 4,我没有说全面能力,是让我们训的这种叫专业大模型,不具备全面能力。他可能写,有的时候写,比如说写某些文章不行,写诗不行的,解奥数题不行、算脑筋急转弯的问题不行,但是他就能够解决你的单项,它要成为一个单项冠军。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
如何利用AI打造专属知识库
利用 AI 打造专属知识库可以通过以下步骤: 1. 拆解创作任务:将复杂的任务拆解到合适的颗粒度,为 AI 提供方法论和明确的输出格式。例如,拆解创作“科幻预见未来”的步骤,确定关键任务节点和围绕其展开的主线任务。 2. 建立定向知识库: 私人知识库中的内容一般包括日常从互联网收集的优质信息以及个人日常的思考和分享。 可以将相关内容导入到特定工具(如 flowith 的知识花园)中作为 AI 可调用的知识库。 对于导入的内容,可打开智能拆分模式,让 AI 自动分析优化拆分逻辑,形成知识“种子”。 3. 工作流中配置知识库: 添加知识库:可同时添加多个知识库。 参数设置: 搜索策略:包括语义检索(适合理解语义关联度和跨语言查询场景)、全文检索(适合特定名称、专有名词等场景)、混合检索(结合前两者优势)。 最大召回数量:选择返回给大模型使用的内容片段数量,数值越大返回越多。 最小匹配度:根据设置选取要返回的内容片段,过滤低相关度结果。需多轮测试找出最优值。 此外,基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案: 1. 训练专有大模型:效果虽好,但成本高,更新难度大,并非当下主流方案。 2. 利用 RAG(检索增强生成)技术。
2025-03-31
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
如果我想让deepseek成为我专属的公文写作助手,需要输入什么提示词
如果您想让 DeepSeek 成为您专属的公文写作助手,可以参考以下提示词: 1. 首先借助 AI 分析好的文章: 找出您最喜欢的文章,投喂给 DeepSeek R1(理论上来说适合大多数 AI,尤其是有推理模型)。 第一次询问:请从写作角度分析这篇文章。 第二次询问:请再从读者角度分析这篇文章。 第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 2. 让 AI 对您写的文章进行点评:“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。” 3. 根据文章内容对作者进行心理侧写:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。”
2025-03-06
如何建立一个行业的知识库,并建立这个行业的专属AI模型?
建立一个行业的知识库并建立专属 AI 模型可以参考以下步骤: 1. 明确行业需求和目标:确定知识库和 AI 模型要解决的具体问题和实现的功能。 2. 收集和整理数据:包括行业相关的各种信息、文档、案例等,为知识库提供素材。 3. 设计提示词:明确 AI 模型的角色和专注的技能,使其能够按照设定进行工作。 4. 构建知识库:将行业特定的规则、流程、案例等内容整理成工作手册,供 AI 模型参考。 5. 选择合适的 AI 模型:例如可以使用阿里千问模型等。 6. 进行模型训练和优化:根据收集的数据和设定的提示词、知识库对模型进行训练,并不断优化。 7. 融合实际场景:让人类专家配备可穿戴设备,收集现实世界的互动供 AI 学习,避免复制危险的偏见。 8. 持续评估和改进:根据实际应用效果,对知识库和 AI 模型进行评估和改进。 例如,在医疗保健领域,开发具有潜在空间层次结构的堆叠 AI 模型,反映对每个基本元素的理解或预测能力。创建专门从事医疗保健特定领域的 AI,让其接触到顶级从业人员的多样化视角。在财经领域,依托中央财经大学的资源优势,基于内容增强型知识插槽技术构建高质量知识库,与客户自有知识库结合,实现全业务场景的支撑,可实现快速的专家级 Agent 构建与管理维护。在文档处理领域,如上海普米智图智能科技有限公司,自主研发的数据框架 Ananke 和 Agent 框架 Moros,利用智能体技术提升工作流效率。
2025-03-01
如何对扣子智能体做专属训练
对扣子智能体进行专属训练时,需要注意以下要点: 1. 跳转设置:扣子在节点切换提供了独立和非独立两种识别模式。独立识别模式中每个节点都有一个独立识别模型,非独立模式则直接使用当前智能体模型进行判断,实际使用中推荐独立模式。 2. 独立模式的选择:独立模式有两种选择。第一种是面对通用指令时,选择已经训练好的、专门用于节点切换的大型模型,其优点是经过特定训练,无需额外操心设计。第二种是在遇到非常复杂的情景时,使用自定义的大型模型,可根据需求定制模型和编写特定提示词以适应复杂交互场景,但实际测试效果不理想,所以推荐使用第一种。 3. 关键注意点:在使用专门训练的意图识别模型进行节点切换时,要特别注意两个关键点。一是每个智能体的用途必须清晰明确,在设计和实现时要清楚标注其功能和目的,以确保系统能准确识别和响应用户意图。二是智能体的名称非常重要,应清晰、易于识别,便于系统识别和记忆。
2025-01-27
如何做一款专属某行业的AI
要开发一款专属某行业的 AI ,可以参考以下要点: 1. 学习模式:AI 应像人类一样学习,例如在医疗保健领域,创建具有潜在空间层次结构的堆叠 AI 模型,反映对每个基本元素的理解或预测能力,可能会以与人脑皮层类似的方式发展,并针对特定任务专门设计神经架构。 2. 特定领域专家 AI:创建特定领域的专家 AI 比创建全能 AI 更容易,预计会创造许多专家 AI ,它们在编码、数据和测试方面采用多样化方法,并提供多种意见。 3. 现实世界互动:让熟练的人类专家配备可穿戴设备,收集现实世界的互动供 AI 学习,同时避免复制危险的偏见。 4. 模型生态系统:以医疗保健为例,应投资创建像优秀医生和药物开发者那样学习的“专家”AI 模型生态系统。成为顶尖人才通常从多年密集信息输入和正规教育开始,再通过学徒实践,AI 学习也应如此,通过堆叠模型训练,而非仅依靠大量数据。 5. 行业调研报告: 步骤:让 AI 阅读学习优秀行业调研报告,总结方法论和操作框架;询问收集行业数据时所用的一手和二手数据及靠谱资料收集网站;要求 AI 推荐行业信息网站和微信公众号,并输出行业调研报告框架;丰富框架每一章节内容。 注意事项:使报告有深度可通过自身对行业的了解整理深度洞察和见解,或深度咨询 AI 并借助其知识学习、研究和总结。 以上是关于如何做一款专属某行业的 AI 的相关内容。
2025-01-22
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14