Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有什么测评大模型可用性的自动化方案吗

Answer

评估大型模型的可用性是一个复杂的过程,涉及到多个方面的考量,包括准确性、效率、稳健性、可解释性和伦理等。虽然目前没有一个统一的自动化方案能够全面评估所有方面,但是有一些工具和方法可以用于自动化评估模型的某些特性。以下是一些常用的自动化方案和工具:

  1. 单元测试和集成测试:对于模型的不同组件,可以使用单元测试来验证其是否按预期工作。集成测试则可以确保不同组件在一起时也能正常工作。
  2. 基准测试和数据集:使用标准的数据集和基准测试来评估模型的性能。例如,对于自然语言处理模型,可以使用GLUE、SuperGLUE或SQuAD等数据集。
  3. 模型卡片(Model Cards):模型卡片是一种文档,用于记录模型的性能、训练数据和预期的使用场景。这可以帮助用户了解模型的适用性和限制。
  4. 连续集成/连续部署(CI/CD):使用CI/CD工具来自动化模型的测试和部署过程。例如,使用Jenkins、GitHub Actions或GitLab CI/CD来自动化测试和部署流程。
  5. 自动化性能监控:使用工具如Prometheus和Grafana来监控模型的性能指标,如延迟、吞吐量和准确性。
  6. 自动化回归测试:使用工具来定期运行回归测试,以确保模型的更新不会引入新的错误。
  7. 可解释性和可视化工具:使用工具如LIME、SHAP或Captum来解释模型的决策,并使用TensorBoard等工具来可视化模型的训练过程。
  8. 伦理和偏见检测:使用工具来检测模型输出中的偏见和伦理问题。例如,可以使用IBM的AI Fairness 360工具来检测和减轻机器学习模型中的偏见。
  9. 模拟和沙盒环境:在模拟环境中测试模型的性能,以避免在实际部署中出现问题。
  10. 云服务和平台:使用云服务提供商(如AWS、Google Cloud Platform、Azure)提供的自动化工具来部署和管理模型。

虽然这些工具和方法可以自动化评估模型的某些方面,但通常还需要人工参与来综合评估模型的可用性,特别是在涉及模型的可解释性和伦理问题时。因此,自动化方案应该与人工审核相结合,以确保模型的全面评估。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
用AI做职业测评
以下是关于用 AI 做职业测评的相关信息: 职业规划导师(校招版)功能: 1. 职业趋势分析:基于最新市场数据和行业报告,协助用户分析自身专业或职业的前景,助其了解未来职业趋势。 2. 技能评估与提升:通过测评工具评估用户当前职业兴趣,提供针对性学习资源和课程建议,帮助提升专业技能。 3. 职业匹配与推荐:根据用户兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化职业建议。 4. 职业发展规划:结合用户个人情况和市场需求,制定详细的职业发展计划,包括短、中、长期目标,帮助用户在 AI 时代找到职业定位。 后续使用场景及商业化前景: 1. 学生和应届毕业生: 职业选择和规划:了解 AI 技术在不同职业中的应用,评估兴趣和技能,选择合适路径并制定规划。 技能提升:根据职业目标获得个性化学习建议和资源,提升 AI 领域技能。 2. 职场新人和职业转换者: 职业发展指导:制定职业发展计划,明确短期和长期目标。 职业转型支持:提供转型路径和必要技能培训资源,帮助顺利转型。 3. 企业: 人才招聘和培养:评估应聘者 AI 技能水平,选择合适候选人,为现有员工提供职业发展规划和技能提升建议,培养内部 AI 人才。 员工职业发展:为员工制定个性化职业发展计划,提供持续指导和培训,提升满意度和留任率。 4. 教育机构: 职业指导服务:作为学生职业指导一部分,帮助了解 AI 领域职业机会和发展路径,提升就业率。 课程设计和优化:根据市场需求和学生职业规划优化课程设置,提供针对性 AI 技能培训。 5. 职业咨询师: 辅助工具:使用产品为客户提供更精准职业规划建议和技能评估,提升服务质量和效率。 数据支持:基于产品提供的市场数据和职业趋势分析,为客户提供更全面和前瞻性指导。 BotID:7388833785208504358
2025-03-31
测评集怎么准备?
准备测评集通常需要以下步骤: 1. 确定评估标准:根据具体的业务目标和应用场景,明确测评的重点和要求。 2. 构建测试题目:例如对于中文大模型,可以包括多轮开放问题和多种能力的客观选择题,如 2023 年度中文大模型基准测评报告中提到的 1060 道多轮简答题和 3213 道客观选择题。 3. 考虑多维度和多视角:采用综合性的测评方案,全面评估模型的能力。 4. 引入裁判模型:如使用超级模型作为评判官,对不同模型的表现进行对比和评分。 5. 设定评分规则:明确胜、和、负的得分情况,并计算综合得分。 6. 进行人工校验:确保测评题目的准确性和有效性。 在开发产品视角的大模型 RAG 应用时,评测环节首先要确定测评标准,包括是否理解问题、是否匹配正确政策原文、回答是否准确全面、是否生成原文以外内容、回答是否可靠以及是否支持追问等方面。对于菜品秀秀的 Bot 评测集,可以根据具体菜品的烹饪步骤、食材准备、口味特点等方面进行构建。
2025-03-18
AI测评
AI 测评主要包括以下几个方面: 1. AI Review(测试版):这是一项能让您查看代码库中近期更改以捕获潜在错误的功能。您可以单击各个审阅项在编辑器中查看完整上下文,并与 AI 聊天获取更多信息。为了让其更有利,您可以提供自定义说明让 AI 专注于特定方面,比如性能相关问题。目前有几个查看选项,如查看工作状态、查看与主分支的差异、查看上次提交。 2. 从 AI 助教到智慧学伴的应用探索:未来展望包括 AI 辅助测评,例如作业题目智能生成与优化、主观题 AI 辅助批改、基于平台数据的学情智能分析等。对于教师试讲语言的评价,可从语言的准确性等五个维度打分(每项 5 分,共 25 分),给出总分,并以和蔼可亲的语文老师角色给出 700 字左右中肯评价及改进建议。 3. 【法律法规】《促进创新的人工智能监管方法》:提到工具如保证技术和技术标准可支持供应链风险管理,评估框架时要关注法律责任在 AI 中的有效公平分配,持续收集各方证据以监测框架对 AI 供应链中不同参与者的影响,尤其关注基础模型带来的潜在挑战。并提出了一些咨询问题,如监管者在不同 AI 应用和系统中应用原则可能面临的挑战及解决方法,以及对通过现有法律框架分配 AI 法律责任的看法和改进建议。
2025-03-12
有没有大模型测评网站
以下是一些大模型测评网站: 玉宝搞过的 LLM 在线评估网站:https://www.llmrank.cn/ ,可看到国内各个闭源大模型的 HUMANEVAL 测评得分,并能与 QWEN2 对比。 Compass Arena:由上海人工智能实验室和魔搭社区联合推出,集齐了国内主流的 20 多款大模型,包括阿里通义千问、百度文心一言、腾讯混元、讯飞星火、字节跳动豆包、智谱 AI、百川智能、零一万物、月之暗面等,用户可在平台选择大模型的两两“对战”,实名或匿名对战皆可。测评地址:https://opencompass.org.cn/arena 。 中文大模型评测收集与调研相关网站: InfoQ + 极客帮:https://www.guotaixia.com/post/5124.html GAOKAOBench:https://github.com/OpenLMLab/GAOKAOBench ,是以中国高考题目为数据集,测评大模型语言理解能力、逻辑推理能力的测评框架。 清华安全大模型测评:http://115.182.62.166:18000 ,清华收集的一个评测集,涵盖了仇恨言论、偏见歧视言论、犯罪违法、隐私、伦理道德等八大类别,包括细粒度划分的 40 余个二级安全类别。 JioNLP 个人测评:评测数据集:https://github.com/dongrixinyu/JioNLP/wiki/LLM 评测数据集 ,考察 LLM 模型对人类用户的帮助效果、辅助能力,可否达到一个【智能助手】的水平。 EduTEP:华东师范大学计算机科学与技术学院 EduNLP 团队组建智能教育算法测评小组,开发智能教育可信评测平台(EduTEP)。EduTEP 对比多种大模型在教育领域中的综合性能,针对 K12 教育发布首个 CALMEDU 评测框架与 CALMEDU001 评测报告。 娱乐资本论:从实用角度出发,分析大模型在各种文本应用场景,如小红书带货文案、抖音直播文案、知乎问答、小说创作、公关信写作、歌词生成、淘宝商品详情页文案、广告宣传片文案、剧本创意策划等方面的综合表现。 全面的模型测评网站:https://lmsys.org/blog/20230503arena/
2025-02-15
你是一个专业的AI工具测评师,用过市场上的所有AI工具,请制作一个PPT,介绍一个如何使用AI进行办公提效,并根据你的经验,对使用过的AI工具进行分类对比和测评,对比结果以表格形式呈现,需要包括是否收费,国内是否可用,主要面向对象,优点和缺点,突出功能等
以下是为您制作的关于如何使用 AI 进行办公提效以及 AI 工具分类对比和测评的 PPT 内容: 幻灯片 1:封面 标题:AI 助力办公提效及工具测评 幻灯片 2:目录 AI 在办公中的应用场景 常用 AI 办公工具分类对比 各工具的详细测评 幻灯片 3:AI 在办公中的应用场景 辅助文档处理 自动生成会议记录 办公文件分类管理 语言学习纠错 幻灯片 4:常用 AI 办公工具分类对比(表格形式) |工具名称|是否收费|国内是否可用|主要面向对象|优点|缺点|突出功能| |||||||| |平安好医生 APP|部分功能收费|是|医疗工作者和患者|辅助医生诊断,提高准确性|可能存在误判|辅助疾病诊断| |腾讯会议|部分高级功能收费|是|企业和个人|自动生成会议记录,方便回顾|语音识别准确性有待提高|会议记录生成| |字体管家 APP|部分字体收费|是|设计和文字工作者|生成多种书法字体|字体版权问题|书法字体生成| |醒图 APP|部分功能收费|是|摄影爱好者|提供构图建议,提升照片质量|对复杂场景的建议有限|摄影构图建议| |游戏内商城推荐功能|部分游戏收费|是|游戏玩家|根据需求推荐道具|推荐的精准度因人而异|游戏道具推荐| |彩云天气分时预报|部分功能收费|是|出行人群|提供精准分时天气预报|天气变化的不确定性|分时天气预报| |医渡云病历分析系统|收费|是|医疗机构|分析病历辅助诊断|数据安全性|病历分析| |讯飞听见会议总结功能|部分功能收费|是|企业和个人|自动总结会议发言内容|对复杂语言理解有限|会议发言总结| |书法临摹软件|部分功能收费|是|书法爱好者|提供临摹指导和评价|对不同书法风格的适应性|临摹辅助| |下厨房口味调整功能|部分功能收费|是|烹饪爱好者|根据反馈调整菜谱口味|口味调整的局限性|菜谱口味调整| |英语流利说纠错功能|部分课程收费|是|语言学习者|帮助纠正错误|对口语表达的纠错有限|语言学习纠错| |豆瓣电影剧情分析工具|免费|是|电影爱好者|提供剧情深度解读|分析的主观性|剧情分析| |腾讯文档分类功能|部分高级功能收费|是|企业和个人|自动分类办公文件|分类准确性依赖数据|文件分类| |美丽修行定制方案功能|部分功能收费|是|美容护肤人群|定制个性化护肤方案|方案的普适性|护肤方案定制| 幻灯片 5:总结 强调 AI 在办公领域的重要性和潜力 鼓励根据实际需求选择合适的 AI 工具提升办公效率 以上 PPT 内容仅供参考,您可以根据具体需求进行修改和完善。
2025-02-10
模型能力测评方法有哪些,比如ragas这种
以下是一些常见的模型能力测评方法: 1. 从模型角度(generation): 回答真实性:评估模型结果的真实性,减少模型幻觉。 回答相关度:衡量结果与问题的相关性,避免南辕北辙。 2. 从检索角度(retrieval): 召回率(recall):考查相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):评估返回的检索内容中有用信息的占比,越多越好。 RAGAS 是一个用于 RAG 评估的知名开源库,您可以通过了解和使用。 RAG 具有一定的优势和局限性: 优势: 能够解决大语言模型技术中输出结果的不可预测性、知识的局限性、幻觉问题、数据安全性等问题。 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。 可以和微调结合使用。 局限性: 适合打造专才,不适合打造通才,不适合为模型提供通用领域知识。 难以让模型保持稳定的风格或结构输出,降低 token 消耗等,需要使用微调技术解决。
2025-02-07
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
自动化控制电脑
以下是关于自动化控制电脑的相关信息: Google 正在开发名为“Project Jarvis”的 AI 项目,预计年底亮相。该项目旨在实现 AI 自动化操作 Chrome 浏览器中的任务,借助升级版 Gemini 2.0。“Jarvis”作为 Chrome 扩展短暂曝光,可作为上网伴侣,帮助用户完成自动化任务,通过截图分析屏幕内容,使用 Gemini 2.0 模型决定执行操作,例如预订餐厅或下单,预计将在 Gemini 2.0 发布后上线,可能在下个月。 目前没有更多关于自动化控制电脑的其他详细内容。
2025-04-10
自动化
以下是关于自动化的相关内容: Python 在自动化方面的应用: Python 以其简洁语法和强大库支持,成为自动化任务的首选语言之一。 办公软件自动化: Pythondocx 用于创建、修改和提取 Word 文档。 Openpyxl 或 xlsxwriter 用于操作 Excel 文件。 Pythonpptx 用于创建和修改 PowerPoint 演示文稿。 PyPDF2 用于分割、合并、裁剪和转换 PDF 文件,还能添加自定义数据、查看选项和密码,以及检索文本和元数据。 爬虫: Requests 用于发送 HTTP 请求,适合网络请求自动化。 Selenium 用于自动化 Web 浏览器交互,模拟用户行为。 BeautifulSoup 和 lxml 用于解析 HTML 和 XML 文档,提取网页数据。 测试自动化: Unittest 和 pytest 支持自动化测试。 容器与虚拟化自动化: Dockerpy 用于自动化 Docker 容器的创建和管理。 HR 政策海报生成的自动化工作流: 通过飞书和扣子的结合配置工作流,实现 HR 政策海报的自动化生成。但为保证质量,不建议完全自动化,生成内容最好有人把关。还可进一步配置机器人定时执行工作流,并将海报发送到指定群聊,实现端到端的自动化。 新工业革命中的自动化: 在生物制药和医疗保健等领域,机器可以学习并复制人的专业知识,实现规模扩展。自动化和机器人技术实现了规模,并解决了“未工业化”生物学的最大弱点,使生物技术能够大规模扩展。
2025-04-10
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
普通人想学习AI自动化,make和coze哪个更推荐一点
对于普通人学习 AI 自动化,Make 和 Coze 哪个更适合的问题,以下是一些相关信息供您参考: Make 对于编程小白比较友好,其思考过程较长,有助于学习,但不太适合专业选手,因为思考过程较慢,可能会让人有点不耐烦。Make 具有国内版优势,包括深度理解中国开发场景和技术生态、完全免费、无需翻墙、流畅稳定,还具备完整的 IDE 功能(代码编写、项目管理、插件管理、源代码管理等)。您可以通过进行尝试。 Coze 是一款 AI Agent 的衍生产品,其价值在于可以跟进当前 AI Agent 工具的发展情况,发现商业化机会,还能用于做产品 Demo。在学习新知识如 RAG 时,可以先通过 Claude 了解细节概念,再通过 Coze 搭建 Demo 进行实践。在学习 RAG 过程中,还可以利用 Coze 的知识库能力创建如产品资料问答机器人等 Bot。 总的来说,如果您是编程小白,Make 可能更适合;如果您希望跟进 AI 工具发展并进行实践操作,Coze 可能更符合您的需求。但最终的选择还需根据您的具体学习目标和个人偏好来决定。
2025-04-08
AI在非标自动化机构设计上有哪些应用
AI 在非标自动化机构设计上的应用包括以下方面: 1. 智能体应用: 决策智能体设计,使用语言模型遍历预定义的决策树。 轨道智能体,为智能体配备更高层次的目标,限制解决空间,要求遵循标准作业程序并使用预先设定的“工具”库。 通用人工智能体,完全依赖语言模型的推理能力进行所有的计划、反思和纠正。 2. AI 绘画应用: 快速草图,帮助设计师快速创建草图和概念图,便于探索和调整设计方案。 自动化创意设计,快速创建各种设计方案,加快设计过程和减少犯错。 自动化颜色匹配,自动匹配色彩,使设计作品更协调美观。 自动化插图绘制,帮助设计师自动化绘制插图,如手绘、卡通风格插图等。 3. 计算机视觉工具库应用: Roboflow 的开源计算机视觉工具库 Supervision 新增了高级视频分析功能,其开发的自动计数工具能识别物体、追踪姿态并进行动作计数。该工具库是全方位的计算机视觉平台,支持多种注释和图像格式,提供过滤、标签、分割、预处理和增强图像数据的功能,还集成了 OpenAI、Meta AI 等的模型,并提供一系列工具来组织视觉数据、自动化标签和部署基础模型。
2025-03-31
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14