快速搭建知识库需要系统化的规划和执行。以下是一些步骤和建议:
确定知识库的范围和目的:
选择知识库平台:
收集现有资料:
数字化资料:
资料分类:
创建索引和标签:
内容整理:
利用自动化工具:
建立模板:
知识审核:
构建搜索功能:
设置访问权限:
知识库测试:
用户培训:
持续更新:
收集反馈:
备份和恢复:
利用云服务:
集成外部资源:
遵守法律法规:
快速搭建知识库的关键在于明确目标、选择合适的工具、高效组织内容以及确保可访问性和可维护性。随着时间的推移,知识库应该不断演化和完善,以满足用户的需求。
1.首先访问如下网址当你打开这个页面的时候,会让你登陆,这个时候我们随便使用一个邮箱注册一个账号即可1.和本地大模型进行对话登陆成功之后,如果你已经使用过ChatGPT等类似的大模型对话网站,我相信你对这个页面并不陌生。Open WebUI一般有两种使用方式第一种是聊天对话第二种是RAG能力,也就是可以让模型根据文档内容来回答问题。这种能力就是构建知识库的基础之一如果你的要求不高的话,我们已经搭建了一个本地大模型了,并且通过Web UI实现了和大模型进行对话的功能。相信通过这么一通折腾,你就理解了ChatGPT的信息流,至于为什么ChatGPT的访问速度比我们自己的要快,而且回答效果要好,有两个原因快:是因为GPT大模型部署的服务器配置高好:是因为GPT大模型的训练参数多,数据更优以及训练算法更好如果你想要更加灵活的掌握你的知识库,请接着往下看
因为利用大模型的能力搭建知识库本身就是一个RAG技术的应用。所以在进行本地知识库的搭建实操之前,我们需要先对RAG有一个大概的了解。以下内容会有些干,我会尽量用通俗易懂的描述进行讲解。我们都知道大模型的训练数据是有截止日期的,那当我们需要依靠不包含在大模型训练集中的数据时,我们该怎么做呢?实现这一点的主要方法就是通过检索增强生成RAG(Retrieval Augmented Generation)。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给LLM。我们可以将一个RAG的应用抽象为下图的5个过程:文档加载(Document Loading):从多种不同来源加载文档。LangChain提供了100多种不同的文档加载器,包括PDF在内的非结构化的数据、SQL在内的结构化的数据,以及Python、Java之类的代码等文本分割(Splitting):文本分割器把Documents切分为指定大小的块,我把它们称为“文档块”或者“文档片”存储(Storage):存储涉及到两个环节,分别是:将切分好的文档块进行嵌入(Embedding)转换成向量的形式将Embedding后的向量数据存储到向量数据库检索(Retrieval):一旦数据进入向量数据库,我们仍然需要将数据检索出来,我们会通过某种检索算法找到与输入问题相似的嵌入片
上面将文本转换成向量(一串数字)能大大节省空间,它不是压缩,可简单理解为索引(Index)。接下来就有意思了。比如我有一个大文本,可以先把它拆分成若干个小文本块(也叫chunk),通过embeddings API将小文本块转换成embeddings向量,这个向量是跟文本块的语义相关。在一个地方(向量储存库)中保存这些embeddings向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过embeddings API转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的prompt(问题/提示词),发送给GPT API。这样一来就不用一次会话中输入所有领域知识,而是输入了关联度最高的部分知识。一图胜千言,转一张原理图。再举一个极其简单的例子,比如有一篇万字长文,拆分成Chrunks包含:文本块1:本文作者:越山。xxxx。文本块2:公众号越山集的介绍:传播效率方法,分享AI应用,陪伴彼此在成长路上,共同前行。文本块3:《反脆弱》作者塔勒布xxxx。文本块4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。...文本块n