Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

通过训练生成歌曲

Answer

目前有以下两个与通过训练生成歌曲相关的模型:

  1. ElevenLabs Music:ElevenLabs 推出了自己的音乐生成模型 ElevenLabs Music,并展示了早期预览版生成的歌曲。该模型可直接通过文本提示生成完整带歌词的音乐,且声称这些歌曲都是根据单个文本提示生成的,没有任何编辑。其生成的歌曲风格涵盖流行摇滚、乡村、爵士、当代 R&B 和独立摇滚等多样化类型。详细内容和更多试听可访问:https://xiaohu.ai/p/7687
  2. OpenAI 的 Jukebox:3 年前推出,即将发布 Jukebox 2。它基于 120 万首歌曲的数据集训练,能根据歌词、艺术家和流派信息生成音乐和人声歌曲。演示列表可在:https://soundcloud.com/openai_audio 查看,项目地址为:https://openai.com/research/jukebox
Content generated by AI large model, please carefully verify (powered by aily)

References

ElevenLabs Music

ElevenLabs推出其自己的音乐生成模型ElevenLabs Music并展示了早期预览版生成的歌曲,该模型可直接通过文本提示生成完整带歌词音乐。ElevenLabs声称这些歌曲都是根据单个文本提示生成的,没有任何编辑。各首歌曲风格涵盖流行摇滚、乡村、爵士、当代R&B和独立摇滚等多样化类型。详细内容,更多试听:https://xiaohu.ai/p/7687

XiaoHu.AI日报

? https://x.com/xiaohuggg/status/1763819660779405331?s=204⃣️?OpenAI的音乐生成模型:Jukebox3年前推出,即将发布Jukebox 2基于1.2百万首歌曲的数据集训练能根据歌词、艺术家和流派信息生成音乐和人声歌曲?演示列表:https://soundcloud.com/openai_audio?项目地址:https://openai.com/research/jukebox? https://x.com/xiaohuggg/status/1763775026040590531?s=205⃣️?@CSM_ai:文本、图像或草图转换为3D素材直接应用于游戏中,无需后期处理视频演示了在ROBLOX游戏中的应用?体验地址:https://cube.csm.ai? https://x.com/xiaohuggg/status/1763758877999587757?s=206⃣️?Sailor:东南亚国家定制的语言模型基于Qwen 1.5,覆盖7种语言从0.5B到7B不同大小版本,适应不同需求在SEA语言的多种任务上表现出色?项目:https://sailorllm.github.io? https://x.com/xiaohuggg/status/1763753689108627960?s=20

XiaoHu.AI日报

? https://x.com/xiaohuggg/status/1763819660779405331?s=204⃣️?OpenAI的音乐生成模型:Jukebox3年前推出,即将发布Jukebox 2基于1.2百万首歌曲的数据集训练能根据歌词、艺术家和流派信息生成音乐和人声歌曲?演示列表:https://soundcloud.com/openai_audio?项目地址:https://openai.com/research/jukebox? https://x.com/xiaohuggg/status/1763775026040590531?s=205⃣️?@CSM_ai:文本、图像或草图转换为3D素材直接应用于游戏中,无需后期处理视频演示了在ROBLOX游戏中的应用?体验地址:https://cube.csm.ai? https://x.com/xiaohuggg/status/1763758877999587757?s=206⃣️?Sailor:东南亚国家定制的语言模型基于Qwen 1.5,覆盖7种语言从0.5B到7B不同大小版本,适应不同需求在SEA语言的多种任务上表现出色?项目:https://sailorllm.github.io? https://x.com/xiaohuggg/status/1763753689108627960?s=20

Others are asking
AI改歌词歌曲
以下是关于 AI 改歌词歌曲的相关内容: 在《AI 你·南京》AIGC 城市宣传 MV 全流程制作解析中,先写好文案,尝试剪映里预设的 AI 语音效果不佳后,决定为南京写歌并制作 MV。将文案复制给 AI 进行歌词改写和取名,还可定义歌词风格和时间长度。经过比较,选择了 GPT 写的歌词并进行修改定稿。最终歌词如“悠悠金陵风,古韵今犹存,钟山风雨起,金粉六朝魂。龙蟠虎踞地,文采风流情。梦开始之处,南京故事行。走过历史长廊,触摸时间痕迹,秦淮夜色下,灯火映繁华。夫子庙旧梦长,儒韵千古传,石头城波光里,岁月永流转。” 在爆肝 60 小时用 AI 做 MV 的万字保姆级复盘攻略中,歌词生成与修改分为多个阶段,包括使用 GPTs 给出信息得到初稿、根据分镜逐幕调整、考虑押韵、拼成一首歌、微调时长和审核歌词韵脚等,最终得到定稿歌词。 在张吃吃的 AI 歌手 ACE Studio 入门教程及工作流分享中,完成歌手选择后,需要一边试听一边对转换出来的 MIDI 进行微调,包括歌词发音、音准和节奏等方面。完成瑕疵修复后可导出歌曲,用于不同用途选择不同格式。
2025-04-12
你可以将人声录入到歌曲中吗
可以将人声录入到歌曲中。以下为您介绍几种相关的方法和注意事项: 在剪映中,您可以选择人声歌曲或纯音乐。如果选择人声歌曲,需要填入歌词,您可以自己写或者让 AI 帮忙写。比如通过智能歌词按钮,输入简单的词语给 AI 提示来写作歌词。 即梦 AI 发布的“数字人口型大师模式”能自动识别歌曲里的人声,但目前最长支持 15 秒的音乐匹配,需要手工把音乐截断成 15 秒以内的片段,然后再做剪辑。同时要注意即梦 AI 存在一些成功率和效果方面的问题,比如表情随机、手个别情况下会崩坏、多人同时唱时对图片质量有要求、不能上传名人肖像等。 Udio 不会使用艺术家的声音生成歌曲,在幕后风格参考会被一组相关标签替换。在文本输入下方,有两种类型的建议标签可点击添加到提示中,您还可以移动插入符号到提示的任何部分来更改完成。
2025-04-08
AI生成歌曲,我有曲子想填词
以下是关于 AI 生成歌曲的相关内容: 1. 大峰在《梦回温州》的创作中,使用 Suno 生成歌曲时,填写 1 3 个风格词(如中国风)能让 AI 有更多发挥空间。靠多年听歌积累的乐感和音乐品味,从生成的歌曲中选出中意的一首。将歌词发给 GPT 并告知想法,让其以英文 AI 绘画提示词形式提供每句歌词的分镜,然后丢进 Midjourney 生成图片,再用 Runway 进行图生视频。 2. 金属文在《西游不能停》的歌词创作中,确定紧扣“西游记”和“职场”的主题,用 ChatGPT 的 browsing 总结获取灵感,增加网络热梗增加趣味。写说唱有先定 flow 再填词、先写词再优化 flow、歌词和 flow 一起搞三种方法,此次采用直接把歌词丢给 SUNO 生成说唱歌曲的思路。 3. 对于 AI 音乐,Suno 和 Udio 推出的上传音频文件生成音乐功能能精确控制速度、旋律、配器、合成等。节省的点数可用于多 Roll 与流派、心情、场景相关的曲子并存好旋律素材,或用于 roll 更多细节调整提升作品品质。还可用简单例子演示工作流。
2025-02-11
利用自己的声音歌唱AI生成歌曲
以下是一些利用自己的声音歌唱 AI 生成歌曲的相关信息: 1. LAIVE:这是一个利用 AI 技术一次性生成音乐、歌词、主唱等的创作平台。使用者可以选择喜欢的类型和情调,上传参考音源,AI 会通过分析生成音乐,还可以选择主唱和修改歌词,目前为开放测试阶段。输入促销代码“LAIVEcreator”可获得 50 代币(入口在个人资料),令牌有效期为输入代码后的 30 天,促销码失效日期为 4 月 17 日。链接:https://www.laive.io/ 2. Combobulator:DataMind Audio 推出的基于 AI 的效果插件,利用神经网络通过样式转移的过程重新合成输入音频,从而使用您自己的声音重现其他艺术家的风格。链接:https://datamindaudio.ai/ 3. 大峰的经验分享:用 Suno 生成歌曲时,在填写歌曲风格时填写少量风格词,如中国风,给 AI 更多发挥空间。靠音乐审美从生成的歌曲中选出中意的歌曲。将歌词发给 GPT 并告知想法,让其以英文 AI 绘画提示词的形式提供每句歌词的每个分镜,然后丢进 AI 生图平台(如 Midjourney)生成图片,再用 Runway 进行图生视频。 4. UDIO 制作音乐:Udio 不会使用艺术家的声音生成歌曲,在幕后风格参考会被一组相关标签替换。在文本输入下方有两种类型的建议标签可点击添加到提示中,自动完成是当前单词的建议标签补全,您可以移动插入符号到提示的任何部分,相应更改完成。
2025-01-20
将歌曲MP3转成视频形式的AI工具
以下是一些将歌曲 MP3 转成视频形式的相关 AI 工具及操作步骤: 工具推荐: 1. TME Studio:腾讯音乐开发的 AI 音频工具箱,常用功能为音频分离,可用于将人声和伴奏从歌曲中提取出来。 地址:https://y.qq.com/tme_studio/index.html/editor 2. Vocalremover:包含音频分离、变调、BPM 查询等功能,常用的是变调和 BPM 查询。建议在准备素材阶段,就将音频调整到所需调,并获取到 BPM。 地址:https://vocalremover.org/zh/keybpmfinder 实操步骤: 1. 准备音频素材: 使用干声转换,在软件中分别导入人声干声和伴奏,放在两个轨道上。干声是用来转成 MIDI 做 AI 演唱的。 注意,如果是男歌女唱或者女歌男唱,请在导入前先进行变调后再导入(不会变调的可参考工具推荐)。通常女声比男声高 5 个 key 左右,不绝对,大家根据听感测试调整即可。 2. 干声转换: 在转换之前,先将工程 BPM 设置为与歌曲一致(界面顶部,前面是 BPM 后面是拍数,把 BPM 修改为上述操作获取到的数字),这一步是为了后续微调的时候方便音符对齐节奏。设置完成后,将音频轨道的文件拖入到空白的歌手轨道,即可进行干声转换。 3. 选择歌手:软件左侧有歌手可以选择,长按拖动到歌手轨道的头像处即可切换歌手。
2025-01-18
哪些AI工具可以将歌曲MP3改成MV
目前尚未有直接将歌曲 MP3 转换为 MV 的成熟 AI 工具。通常,制作 MV 需要涉及视频编辑、特效处理、画面设计等多个复杂的环节,需要借助专业的视频编辑软件,如 Adobe Premiere Pro、Final Cut Pro 等,并结合创意和素材来完成。
2025-01-18
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
如何自动生成文案
以下是几种自动生成文案的方法: 1. 基于其它博主开源的视频生成工作流进行优化: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径:通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 生成有趣的《图文短句》: 实现原理: 先看工作流:包括第一个大模型生成标题、通过“代码节点”从多个标题中获取其中一个(可略过)、通过选出的标题生成简介、通过简介生成和标题生成文案、将文案进行归纳总结、将归纳总结后的文案描述传递给图像流。 再看图像流:包括提示词优化、典型的文生图。 最终的 Bot 制作以及预览和调试。 3. 腾讯运营使用 ChatGPT 生成文案: 步骤:通过 ChatGPT 生成文案,将这些文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,系统匹配的素材不符合要求时可以手动替换。例如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类 AI 视频制作工具让普罗大众生产视频变得更轻松上手。
2025-04-15
如何通过输入一些观点,生成精彩的口播文案
以下是通过输入观点生成精彩口播文案的方法: 1. 基于其它博主开源的视频生成工作流进行功能优化,实现视频全自动创建。 效果展示:可查看。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。 涉及工具:Coze平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点是飞书多维表格,填写上架信息(为快速审核,选择仅自己可用),等待审核通过后即可在多维表格中使用。 3. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。 表单分享,实现填写表单自动创建文案短视频的效果。 4. 自动化推送:点击多维表格右上角的“自动化”,创建所需的自动化流程。 另外,伊登的最新 Deepseek+coze 实现新闻播报自动化工作流如下: 第一步是内容获取,只需输入新闻链接,系统自动提取核心内容。开始节点入参包括新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片,以 1ai.net 的资讯为例,添加图片链接提取节点,提取新闻主图,调整图片格式,利用链接读取节点提取文字内容,使用大模型节点重写新闻成为口播稿子,可使用 Deepseek R1 模型生成有吸引力的口播内容,若想加上自己的特征,可在提示词里添加个性化台词。
2025-04-15
小红书图文批量生成
以下是关于小红书图文批量生成的详细内容: 流量密码!小红书万赞英语视频用扣子一键批量生产,这是一个保姆级教程,小白都能看得懂。 原理分析: 决定搞之后,思考生成这种视频的底层逻辑,进行逆推。这种视频由多张带文字图片和音频合成,带文字图片由文字和图片生成,文字和图片都可由 AI 生成,音频由文字生成,文字来源于图片,也就是说,关键是把图片和文字搞出来。 逻辑理清后,先找好看的模版,未找到好看的视频模版,最后看到一个卡片模版,先把图片搞出来,才有资格继续思考如何把图片变成视频,搞不出来的话,大不了不发视频,先发图片,反正图片在小红书也很火。 拆模版: 要抄这种图片,搞过扣子的第一反应可能是用画板节点 1:1 去撸一个,但扣子的画板节点很难用,Pass 掉。用 PS 不行,太死板不灵活,html 网页代码可以,非常灵活。经过 2 个多小时和 AI 的 battle,用 html 代码把图片搞出来了。这里不讲代码怎么写,直接抄就行。要抄,首先要学会拆,不管用什么方式批量生成这样的图片,都必须搞清楚里面有哪些是可以变化的参数,也就是【变量】,如主题、主题英文、阶段、单词数、图片、正文、翻译、普通单词、重点单词等。 想方法: 大概知道批量生成这样的图片需要搞清楚哪些参数,图片用 html 代码搞出来了。但问题是视频怎么搞,这种视频由多张不同的【带文字的图片】生成,比如读到哪句,哪句就高亮起来,图片也可以随着读到的句子变更。最后,视频就是用这样的图片一张张拼起来的。
2025-04-14
ai如何什么生成表格
AI 生成表格通常可以通过以下技术实现: 1. 利用变分自编码器(VAEs)和序列到序列模型(Seq2Seq)等技术生成表格文件、表格公式,并清理、创建、转换和分析表格中的文本数据,例如表格结构设计、数据分析表、表格自动化等。 2. 借助一些办公软件中的 AI 插件,如飞书中的相关插件,先通过 AI 理解图片中的内容并填充到表格列中,然后利用自带插件总结生成相关指令。 此外,在多模态数据生成中,结构化数据生成包括表格生成,多模态合成数据从大类来看有非结构化数据(图片、视频、语音等)和结构化数据(表格等)两大类。非结构化数据生成包括文本生成、图像生成、音频和语音生成、视频生成、3D 生成、合成数据生成等。
2025-04-14
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
怎么用把AI训练成自己的东西?
要将 AI 训练成自己的东西,可以参考以下方法: 1. 像马斯克提到的,对于公开的推文数据可以合理使用,但不能使用私人的东西进行训练。同时,要注重数据的质量和使用方式,高质量的数据对于训练效果至关重要。 2. 张梦飞的方法中,例如部署 LLama Factory 时,需要添加选中“identity”数据集,将训练轮数改成 15 等,并通过一系列操作进行训练和测试。但需要注意的是,训练大模型是复杂的过程,数据集和训练参数都会影响最终效果,需要反复调试和深入学习实践。 3. 在写作方面,我们可以根据自身需求选择人类驱动为主,利用 AI 进行修改完善,或者先由 AI 生成内容再进行修改以符合自己的风格。
2025-04-11
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09