Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何布局本地大模型

Answer

布局本地大模型涉及到硬件、软件和数据处理等多个方面的考虑。以下是一些步骤和建议,帮助你更好地规划和实施本地大模型的部署:

  1. 确定需求

    • 明确你需要部署的模型类型(如图像识别、自然语言处理等)和预期的性能要求。
  2. 硬件选择

    • 根据模型的计算需求选择合适的硬件,包括CPU、GPU、TPU或专用AI加速器。
  3. 软件环境

    • 配置适合大模型运行的软件环境,包括操作系统、编程语言(如Python)、深度学习框架(如TensorFlow、PyTorch)和依赖库。
  4. 数据准备

    • 准备和预处理训练数据,确保数据的质量和多样性,以提高模型的泛化能力。
  5. 模型选择

    • 选择或开发适合你需求的模型架构,考虑模型的复杂度、参数数量和训练时间。
  6. 分布式训练

    • 对于非常大的模型,可能需要分布式训练来加速训练过程。配置多个计算节点和同步机制。
  7. 存储解决方案

    • 考虑数据和模型的存储需求,选择合适的存储解决方案,如SSD、HDD或网络附加存储(NAS)。
  8. 网络配置

    • 确保网络带宽和延迟满足模型训练和推理的需求,特别是在分布式训练环境中。
  9. 安全性

    • 考虑数据和模型的安全性,实施适当的安全措施,如数据加密、访问控制和安全审计。
  10. 监控和优化

    • 监控模型训练和推理过程中的性能,优化计算资源的使用,确保模型的高效运行。
  11. 模型评估

    • 使用验证数据集对模型进行评估,确保模型的准确性和鲁棒性。
  12. 模型部署

    • 将训练好的模型部署到生产环境中,考虑模型的加载、推理和更新机制。
  13. 持续学习

    • 实施持续学习机制,使模型能够根据新数据不断更新和优化。
  14. 文档和维护

    • 编写详细的文档,记录模型的架构、训练过程和部署细节,便于维护和升级。
  15. 合规性

    • 确保模型的部署符合相关的法律法规和行业标准,特别是涉及隐私和伦理的问题。

通过这些步骤,你可以系统地规划和实施本地大模型的部署,确保模型的高效运行和持续优化。

Content generated by AI large model, please carefully verify (powered by aily)

References

【SD】向未来而生,关于SDXL你要知道事儿

SDXL的大模型分为两个部分:第一部分,base+refiner是必须下载的,base是基础模型,我们使用它进行文生图的操作;refiner是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。第二部分,是SDXL还有一个配套的VAE模型,用于调节图片的画面效果和色彩。这三个模型,我已经放入了云盘链接中,大家可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。想要在webUI中使用SDXL的大模型,首先我们要在秋叶启动器中将webUI的版本升级到1.5以上。接下来,将模型放入对应的文件夹中,base和refiner放在“……sd-webui-aki-v4.2modelsStable-diffusion”路径下;vae放在“……sd-webui-aki-v4.2modelsVAE”路径下。完成之后,我们启动webUI,就可以在模型中看到SDXL的模型了。我们正常的使用方法是这样的:先在文生图中使用base模型,填写提示词和常规参数,尺寸可以设置为1024*1024,进行生成。我这边使用了一个最简单的提示词“1girl”,来看看效果。生成的图片大家可以看一下,我觉得是相当不错的。

问:如何部署和训练自己的AI开源模型

根据搜索结果,以下是部署和训练自己的大模型的主要步骤:1.选择合适的部署方式本地环境部署云计算平台部署分布式部署模型压缩和量化公共云服务商部署根据自身的资源、安全和性能需求选择合适的部署方式。1.准备训练所需的数据和计算资源确保有足够的训练数据覆盖目标应用场景准备足够的计算资源,如GPU服务器或云计算资源1.选择合适的预训练模型作为基础可以使用开源的预训练模型如BERT、GPT等作为基础也可以自行训练一个基础模型1.针对目标任务进行模型微调训练根据具体应用场景对预训练模型进行微调训练优化模型结构和训练过程以提高性能1.部署和调试模型将训练好的模型部署到生产环境对部署的模型进行在线调试和性能优化1.注意安全性和隐私保护大模型涉及大量数据和隐私信息,需要重视安全性和合规性总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。内容由AI大模型生成,请仔细甄别

手把手教你本地部署大模型以及搭建个人知识库

所有人都会手把手教你部署XX大模型,听起来很诱人,因为不需要科学上网,不需要高昂的ChatGPT会员费用。但是在开启下面的教程之前,我希望你能有个概念:运行大模型需要很高的机器配置,个人玩家的大多数都负担不起所以:虽然你的本地可能可以搭建出一个知识库,但是它不一定能跑的起来下面我通过一组数据来让大家有个感性的认知。以下文字来源于视频号博主:黄益贺,非作者实操生成文字大模型最低配置:8G RAM + 4G VRAM建议配置:16G RAM + 8G VRAM理想配置:32G RAM + 24G VRAM(如果要跑GPT-3.5差不多性能的大模型)生成图片大模型(比如跑SD)最低配置:16G RAM + 4G VRAM建议配置:32G RAM + 12G VRAM生成音频大模型最低配置:8G VRAM +建议配置:24G VRAM而最低配置我就不建议了,真的非常慢,这个我已经用我自己8G的Mac电脑替你们试过了。讲这个不是泼大家冷水,而是因为我的文章目标是要做到通俗易懂,不希望通过夸大的方式来吸引你的眼球。

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
角色:你是一名软件开发公司的运营经理 背景:现在要准备入局AI导航网站市场,通过AI导航网站实现布局产品流量入口,来获取AI风口的流量。 任务:请你完成AI导航网站的国内外市场调研 要求:调研内容包括AI网站导航的市场、竞品、用户分析以及产品规划、团队人员需求及资源需求、有哪些风险点
以下是对您需求的调研分析: 一、市场分析 目前,AI 领域发展迅速,AI 导航网站作为获取相关信息和资源的入口,具有较大的市场潜力。随着人们对 AI 技术的关注度不断提高,对于便捷、高效的 AI 资源导航需求也在增加。 二、竞品分析 暂未获取到直接关于 AI 导航网站的竞品详细信息。 三、用户分析 用户可能包括对 AI 技术感兴趣的个人、开发者、研究人员、企业等。他们希望通过导航网站快速找到所需的 AI 工具、资源、案例等。 四、产品规划 1. 提供全面、准确的 AI 网站分类和链接,涵盖工具、研究成果、应用案例等。 2. 设立用户评价和推荐系统,帮助用户筛选优质资源。 3. 提供个性化推荐功能,根据用户的浏览历史和偏好推送相关内容。 五、团队人员需求 1. 技术人员:负责网站的开发和维护,如前端开发、后端开发等。 2. 内容编辑:收集、整理和更新 AI 网站信息。 3. 运营人员:负责推广、用户互动和数据分析。 六、资源需求 1. 服务器和带宽资源,以保证网站的稳定运行和快速响应。 2. 数据采集和更新的工具和技术。 七、风险点 1. 市场竞争激烈,可能面临已有成熟竞品的压力。 2. AI 技术发展迅速,需要及时更新网站内容,以保持竞争力。 3. 可能存在版权和法律合规方面的风险。 4. 用户获取和留存的挑战,需要提供优质的服务和用户体验。
2025-03-11
请从知识库搜索相关自资料:AI与环境艺术设计:AI帮助生成设计灵感、AI优化空间布局、AI分析环境因素等
以下是关于 AI 生成 CAD 图的相关资料: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关的学术论文,以了解 AI 在 CAD 领域的应用和研究成果。 2. 专业书籍:查找与 AI 在 CAD 领域相关的专业书籍,从中了解 AI 在 CAD 设计中的应用和案例。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程。在 YouTube 等视频平台上查找教程和演示视频,了解 AI 在 CAD 设计中的应用。 4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等相关的技术论坛和社区,与其他专业人士交流和学习。同时关注 AI 和 CAD 相关的博客和新闻网站,了解最新的技术动态和应用案例。 5. 开源项目和代码库:在 GitHub 等开源平台上探索 AI 和 CAD 相关项目,例如 OpenAI 的 GPT3、AutoGPT 等 AI 模型在 CAD 设计中的应用,了解 AI 在 CAD 设计中的应用和实现。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例,了解 AI 技术在实际项目中的应用和效果。 在学习和研究 AI 生成 CAD 图的过程中,了解相关的基础知识和技术细节非常重要。通过阅读学术论文、参加在线课程、观看教程视频和交流学习,您可以逐步掌握 AI 在 CAD 领域的应用和实现。随着 AI 技术的不断发展,AI 在 CAD 设计中的应用将会越来越广泛,为设计师和工程师提供更多的辅助和支持。
2025-02-27
- AI与环境艺术设计:探讨AI如何帮助生成设计灵感、优化空间布局、分析环境因素等。
AI 在环境艺术设计方面能够提供多方面的帮助: 生成设计灵感:通过分析大量的设计案例和相关数据,为设计师提供新颖的创意和思路。 优化空间布局:利用算法和模型,对空间的利用进行精准分析和优化,以达到最佳的布局效果。 分析环境因素:例如色彩、光影等。在色彩方面,了解色彩的透明度、纯度、饱和度等特性,像莫兰迪配色饱和度低,能产生冷静高档的感觉。色彩还有冷暖之分,冷色系如蓝色、紫色让人感觉凉爽寒冷,暖色系如红黄色让人感觉热情奔放,且任何色系的冷暖取决于颜色调配比例。在光影方面,光源分为自然光(如太阳光、月光)、人造光(如手电筒、路灯)和环境光(来自周围的折射光线)。不同类型和方向的光影(如顶光、逆光、侧光)能体现照片氛围和环境,表达不同情绪,有助于塑造人物形象。光影的颜色(暖光带来温暖舒适等情绪,冷光带来清冷紧张等情绪)和质量(硬光、强光会形成强烈阴影,凸显主体,柔光则几乎没有阴影,更具氛围感)的选择取决于个人审美。在家装中,冷色系会让房间看起来更大,远浅近深会更有开放感。 此外,一些 AI 绘画创作平台,如 MewXAI,也能为环境艺术设计提供支持。它拥有众多超火模型和上百种风格,支持文生图、图生图等功能,还能进行室内设计,上传空间图后,通过分析图片的线条结构和几何形状,即可一键完成多种不同风格的室内/建筑设计,为空间设计师提供灵感,节约时间。 在 AI 作图的创作方法与实操演示方面,要注重趣味性与美感的结合,通过反差、反逻辑、超现实方式带来视觉冲击,同时在美术基础不出错前提下将形式与内容结合。在纹身图创作中,强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。编写提示词时,用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。在实操演示中,按赛题需求先确定创作引子,如中式或日式怪诞风格。在人物创作过程中,从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。同时,也对中式风格的人物、动物、景观等图像生成进行了讨论和尝试。
2025-02-27
户型方案布局AI软件有哪些
以下是一些户型方案布局的 AI 软件: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值高。 2. Maket.ai:主要面向住宅行业,设计师输入房间面积需求和土地约束,软件能自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内的信息集成,实现数据汇总与管理。 每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-02-24
可以给房子设计室内布局吗?
可以利用 AI 为房子设计室内布局。以下是一些相关的方法和工具: 使用 Stable Diffusion 进行室内设计:首先点开“ControlNet”的状态栏,①上传需要进行设计的房间照片;②点击“启用”;③预处理器和模型都选“msld”,这是用来计算房屋线条的。接着切换一个现实照片的大模型,关键词先输入照片质量关键词,然后输入照片的主体,如一个客厅,最后点击生成。这样出来的照片既保留了原来房子的构造,又可以看到新的房屋风格。 一些 AI 工具可以帮助建筑设计师审核规划平面图,例如: HDAidMaster:是一款云端工具,在建筑设计、室内设计和景观设计三个领域表现出色,搭载了自主训练的建筑大模型 ArchiMaster。 Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有探索,能根据输入的房间面积需求和周边土地约束自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入相关标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内的信息集成,实现数据汇总与管理。 但每个工具都有其特定的应用场景和功能,建议根据具体需求选择合适的工具。
2024-10-05
AI应用于信息展示除了以下这段还能写啥?人工智能对演示文稿、网页、微信公众号和Markdown工具都有影响,正重塑信息展示领域。例如,AI可以简化演示文稿设计布局的调整;通过AI能分析用户行为,优化网页内容和结构;在微信公众号利用AI实现个性化推送和智能回复,提升响应和互动质量。Markdown也可利用AI实现智能化编辑和检查。
以下是 AI 应用于信息展示的其他方面: 1. GPT4VAct 作为多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览,基于 AI 的能力、项目目标人群和服务内容类型,可实现未来互联网项目产品原型设计的自动化生成,使效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。 2. 在电影制作方面,可综合应用 AI 工具,如使用 ChatGPT 撰写脚本、分镜、人物设定和旁白,使用 Midjourney 生成静态分镜图片,使用 Runway 生成动态分镜片段,使用 AI 配音软件制作旁白。 3. 在写作方面,AI 可用于草拟各类初稿,如博客文章、论文、宣传材料、演讲、讲座等。还能帮助改进已有的文本,以不同风格创建草稿,激发作者创作出更好的作品,以及协助完成如写邮件、创建销售模板、提供商业计划下一步等任务。
2024-08-15