Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有哪些常见的multi agent调度模式?

Answer

在多智能体(Multi-Agent)系统中,常见的调度模式主要有以下几种:

  1. 集中式调度(Centralized Scheduling) 在这种模式下,有一个中央控制器负责收集所有智能体的信息,并做出整体最优的决策和资源分配。常见于需要全局协调的场景,如机器人协作、交通管制等。
  2. 分布式调度(Distributed Scheduling) 每个智能体根据本地信息和与其他智能体的交互来做出决策,无需中央控制器。常用于大规模、动态、开放的系统,如传感器网络、P2P 网络等。
  3. 市场驱动调度(Market-Driven Scheduling) 智能体通过竞价机制获取资源和任务分配。类似于现实市场的供需规律,常用于电力负载调度、计算资源分配等领域。
  4. 约束优化调度(Constraint Optimization Scheduling) 将多智能体协作问题建模为分布式约束优化问题,通过启发式或完全算法求解近似最优解。适用于任务分配、资源规划等约束严格的场景。
  5. 组织结构调度(Organizational Structuring) 根据特定的组织拓扑结构(层级、同辈、联盟等)对智能体角色和协作模式进行规范,实现有序调度。常见于多机器人协作、组织自动化系统中。
  6. 基于规范协议的调度(Norm-based Scheduling) 定义一组协议规范来约束智能体的行为,并由规范引擎统一调度和裁决。适用于开放、异构的多智能体系统。

这些调度模式各有利弊,实际应用时需要根据系统的特点、约束和目标进行选择和设计。同时也可以采用混合模式,结合不同模式的优点。调度质量和系统性能是评价标准。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
B端AI Agent
以下是关于 B 端 AI Agent 的相关知识: 一、概念定义 1. 智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。随着 ChatGPT 与 AI 概念的爆火,出现了很多相关新名词,如 bot 和 GPTs 等。AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会。 C 端案例:如社交方向,用户注册后先捏一个自己的 Agent,然后让其与他人的 Agent 聊天,两个 Agent 聊到一起后真人再介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:字节扣子和腾讯元器若为面向普通人的低代码平台,类似 APP 时代的个人开发者,那么帮助 B 端商家搭建 Agent 就类似 APP 时代专业做 APP 的。 2. 智能体开发平台:最早接触到的扣子 Coze 是通过一篇科技报道,如 2 月 1 日,字节正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人较常用的是扣子,所以常对比字节扣子和腾讯元器。 3. 关注智能体的原因:目前 AI Agent 的概念在市场上未达成共识,存在被滥用现象。AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化、自主完成任务、多 Agent 协作等特点。目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少,一方面是高度智能化的 Agent 能力需打磨,概念落地有距离;另一方面是 AI 和娱乐消费诉求结合少,主要带来生产方式和效率变革,个人消费者方向目前只看到“私人助理”场景。
2025-04-15
有关 ai agent 的科普文章
以下是为您提供的关于 AI Agent 的科普内容: AI Agent 是一个融合了多学科精髓的综合实体,包括语言学、心理学、神经学、逻辑学、社会科学和计算机科学等。它不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。 目前,关于 AI Agent 存在一些情况。例如,网络上对其的介绍往往晦涩难懂,让人感觉神秘莫测,其自主性、学习能力、推理能力等核心概念,以及如何规划和执行任务、理解并处理信息等方面,都像是笼罩在一层神秘面纱之下。 另外,以国与国之间的外交为例来解释相关协议。假设每个 AI 智能体(Agent)就是一个小国家,它们各自有自己的语言和规矩。各国大使馆试图互相沟通、做生意、交换情报,但现实中存在诸多问题,如协议各异、要求不同等。 如果您想了解更多关于 AI Agent 的详细内容,可访问: 。
2025-04-15
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
AGENT
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 智能体具有以下特点: 1. 自主系统:通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。 2. 关键组成部分: 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆:包括短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索实现长时间保留和回忆信息。 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息。 以下是一些与智能体相关的资源目录: 关于 2025AGENT 智能体全球创作大赛: 1. 报名:通过→首页的“立即参赛”按钮进入报名页面,填写相关信息并提交即可,且参赛完全免费。 2. 提交作品:在本网站直接提交,若采用 flowith 搭建了 Agent 可以在微博、小红书、即刻平台发布,并@Flowith 官方,可获得额外会员奖励。 3. 奖项设置:设有金、银、铜奖和多个单项奖,获奖后将获得组委会颁发的奖金和证书,需保证联系方式准确以便联系。 4. 知识产权归属:参赛作品的知识产权归参赛者所有,但组委会有权在宣传和展示中使用参赛作品。
2025-04-12
AI workflow在企业中是否比Agent应用价值和场景更多
AI workflow 和 Agent 在企业中的应用价值和场景各有特点。 Agentic Workflows 具有以下优势: 1. 灵活性、适应性和可定制性:能够根据任务难度进行调整和演变,通过组合不同模式实现定制,在需求和复杂性增长时进行迭代升级。 2. 在复杂任务上的性能提升:将复杂任务分解为更小、可管理的步骤,显著优于确定性的零样本方法。 3. 自我纠正和持续学习:能够评估自身行为,完善策略,从过去经验中学习,在每次迭代中变得更有效和个性化。 4. 操作效率和可扩展性:可以高精度自动化重复任务,减少人工操作和运营成本,还能轻松扩展。 Agentic Workflow 的应用场景包括原子设计模式的组合、与人类反馈循环集成等。例如,Agentic RAG 在检索增强生成流程中引入了一个或多个 AI Agents,在规划阶段可进行查询分解等操作,还能评估数据和响应的相关性和准确性。 一般来说,Workflow 是一系列旨在完成特定任务或目标的相互连接的步骤。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流利用大模型或其他 AI 技术,分为 Agentic 和非 Agentic 两类。非 Agentic 工作流中,大模型根据指令生成输出。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,被授予权限收集数据、执行任务并做出决策,利用 Agents 的核心组件将传统工作流转变为响应式、自适应和自我进化的过程。 综上所述,不能简单地说 AI workflow 在企业中比 Agent 应用价值和场景更多,这取决于企业的具体需求和任务特点。
2025-04-09
multi agents讲解
多智能体(MultiAgent)是由多个自主、独立的智能体(Agent)组成的系统。每个智能体都能感知环境、决策并执行任务,且它们之间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统受广泛关注。目前常见框架集中在单 Agent 场景,其核心是 LLM 与工具协同配合,可能需与用户多轮交互。而多 Agent 场景为不同 Agent 分配角色,通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架主要组成部分包括: 1. 环境:所有 Agent 处于同一环境,包含全局状态信息,Agent 与环境有信息交互与更新。 2. 阶段:采用 SOP 思想将复杂任务分解为多个子任务。 3. 控制器:可以是 LLM 或预先定义好的规则,负责环境在不同 Agent 和阶段间切换。 4. 记忆:因 Agent 数量增多,消息数量及每条消息的记录字段增加。 此外,吴恩达最新演讲提到四种 Agent 设计范式,Reflection 和 Tool Use 相对经典且广泛使用,Planning 和 Multiagent 较新颖有前景。Reflection 类似于 AI 自我纠错和迭代,如让 AI 写代码并自我检查修改。Tool Use 指大语言模型调用插件拓展能力。在一些场景中,Reflection 可用两个 Agent,一个写代码,一个 Debug。
2025-03-14
什么是multi agent
多智能体(MultiAgent)是由多个自主、独立的智能体(Agent)组成的系统。在这个系统中,每个智能体都能够感知环境、进行决策并执行任务,同时它们之间可以进行信息共享、任务协调以及协同行动,以实现整体的目标。 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统近期受到广泛关注。Agent 系统旨在利用 LLM 的归纳推理能力,为不同的 Agent 分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。 目前,更常见的框架主要集中在单 Agent 场景下。单 Agent 的核心在于 LLM 与工具的协同配合。LLM 根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈。在任务完成过程中,Agent 可能需要与用户进行多轮交互。 与此同时,越来越多的 Agent 框架开始关注多 Agent 场景。为了完成任务,多 Agent 会为不同的 Agent 指定不同的角色,并通过 Agent 之间的协作来完成复杂的任务。与单 Agent 相比,在任务完成过程中,与用户的交互可能会减少一些。 为构建一个多 Agent 框架,主要组成部分包括: 1. 环境(environment):所有 Agent 应处于同一个环境中。环境中包含全局状态信息,Agent 与环境之间存在信息的交互与更新。 2. 阶段(stage):为完成复杂任务,现有多 Agent 框架通常采用 SOP 思想,将复杂任务分解为多个子任务。 3. 控制器(controller):控制器可以是 LLM,也可以是预先定义好的规则。它主要负责环境在不同 Agent 和阶段之间的切换。 4. 记忆:在单 Agent 中,记忆只包括用户、LLM 回应和工具调用结果等部分。而在多 Agent 框架中,由于 Agent 数量增多,导致消息数量增多。同时,每条消息可能需要记录发送方、接收方等字段。 多智能体的核心交互流程包括: 1. 控制器更新当前环境状态,选择下一时刻行动的 Agent。 2. Agent 与环境交互,更新自身的记忆信息。 3. Agent 调用 LLM,执行动作并获取输出消息。 4. 将输出消息更新到公共环境中。 参考资料: 1. 《》 2. 《》
2025-03-03
有没有multi agent相关项目可以推荐一下吗
以下是为您推荐的一些与 multi agent 相关的项目: 1. 《Multi Agent 策略架构基础(1)》:https://waytoagi.feishu.cn/record/1sfvunQZGoT5vB2r29i9PWi6W ,其中介绍了有代表性的 Multi Agent demo 项目包括 AutoGPT、Smallville 小镇和面壁智能 ChatDev,探讨了 Multi Agent 领域的相关内容以及其面临的挑战和限制。 2. 吴恩达最新演讲中提到的清华面壁智能的开源项目 ChatDev,展示了多智能体协作的场景,如不同身份的智能体合作开发小游戏。 此外,为您补充一些关于 multi agent 的知识: 多智能体(MultiAgent)是由多个自主、独立的智能体(Agent)组成的系统。每个智能体都能感知环境、决策并执行任务,且它们之间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统受广泛关注。目前常见框架集中在单 Agent 场景,其核心是 LLM 与工具协同配合,可能需与用户多轮交互。而多 Agent 场景为不同 Agent 指定角色,通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架主要组成部分包括: 环境(environment):所有 Agent 处于同一环境,环境包含全局状态信息,Agent 与环境有信息交互与更新。 阶段(stage):采用 SOP 思想将复杂任务分解为多个子任务。 控制器(controller):可以是 LLM 或预先定义好的规则,负责环境在不同 Agent 和阶段之间切换。 记忆:在多 Agent 框架中,由于 Agent 数量增多,消息数量及每条消息需记录的字段也相应增加。
2025-01-14
mat1 and mat2 shapes cannot be multiplied的错误原因与解决方法
很抱歉,目前知识库中没有关于“mat1 and mat2 shapes cannot be multiplied”错误原因与解决方法的相关内容。但通常这种错误可能是由于矩阵的维度不匹配导致的。您可以检查矩阵 mat1 和 mat2 的形状,确保它们满足乘法运算的规则。例如,如果是二维矩阵相乘,第一个矩阵的列数应该等于第二个矩阵的行数。解决方法可能包括重新调整矩阵的形状,或者检查数据处理和运算的逻辑,确保矩阵的维度在进行乘法运算时是正确匹配的。
2024-10-22
Way to AGI multi-language support
以下是关于 AGI 多语言支持的相关信息: OpenVoice V2 版本已推出,支持多语言,包括英语、西班牙语、法语、中文、日语和韩语。音质有所提升,可复制任何声音,并能精细控制情感、口音和语调。相关链接:https://xiaohu.ai/p/6726 、https://x.com/imxiaohu/status/1783312237937005043 在广义语言方面,当前大多数国家之间语言的高质量翻译可以实现,编程语言之间的相互翻译能力也不错,但人的语言与机器语言之间的翻译还需改进,这需要 AI 具备更强的理解、假设和解决问题的能力,这也是 AI Agent 要实现的目标。
2024-08-15
multi agent是什么
多智能体(Multiagent)是指多个相互作用的智能体组成的系统。在人工智能领域,多智能体系统具有广泛的应用。例如,在供应链中,不同经济运营商之间的责任分配存在不确定性。就我国相关规范而言,服务提供者往往是主要责任主体。而在《人工智能法案》中,人工智能系统供应链的参与主体更为细化,包括提供者、部署商、授权代表、进口商和分发商等,它们被统称为“运营者”。2023 年《AI 法案》折衷草案在法律义务分配设计上,特别是对于高风险人工智能系统,提供者和部署商将承担主要义务。其中,提供者承担最广泛的合规义务,包括建立风险管理制度和质量管理制度等,涵盖人工智能系统生命周期的事前和事后环节;部署商的义务则主要集中于确保对高风险人工智能系统的人工监督和日常检测义务,主要覆盖人工智能生命周期的事中环节。
2024-07-07
算力调度
在多智能体(MultiAgent)系统中,常见的调度模式主要有以下几种: 1. 集中式调度:有一个中央控制器负责收集所有智能体的信息,并做出整体最优的决策和资源分配。常见于需要全局协调的场景,如机器人协作、交通管制等。 2. 分布式调度:每个智能体根据本地信息和与其他智能体的交互来做出决策,无需中央控制器。常用于大规模、动态、开放的系统,如传感器网络、P2P 网络等。 3. 市场驱动调度:智能体通过竞价机制获取资源和任务分配。类似于现实市场的供需规律,常用于电力负载调度、计算资源分配等领域。 4. 约束优化调度:将多智能体协作问题建模为分布式约束优化问题,通过启发式或完全算法求解近似最优解。适用于任务分配、资源规划等约束严格的场景。 5. 组织结构调度:根据特定的组织拓扑结构(层级、同辈、联盟等)对智能体角色和协作模式进行规范,实现有序调度。常见于多机器人协作、组织自动化系统中。 6. 基于规范协议的调度。 在惊人算力成本背后,对于 AI 混战下基础设施的选择,需要注意以下方面:AI 任务的调度可能造成巨大的性能瓶颈或改进。以一种最小化权重交换的方式将模型分配给 GPU,如果有多个 GPU 可用,选择最适合任务的 GPU,以及通过提前批量处理工作负载来最小化停机时间,都是常用的技术。总之,模型优化仍然有点像黑魔法,大多数创业公司都与第三方合作来处理一些软件方面的问题。通常,这些不是传统的 MLops 供应商,而是专门针对特定生成模型进行优化的公司(例如 OctoML 或 SegMind)。
2024-09-26
常见的工作流与 Agent 开发平台
常见的工作流与 Agent 开发平台如下: AI Workflow 开发平台: Coze:新一代 AI Bot 开发平台,集成了丰富的插件工具,有国际版和国内版。 Dify:开源平台,支持自定义和插件。 腾讯元器。 FastGPT:国内知名,支持自定义流程。 影刀&zapier。 Leap。 Betteryeah:立足 RPA 场景,用 AI 将用户需求生成工作流,并通过 RPA 自动化,产品形态与 Coze 相似,是企业级的 AI 应用开发平台。 Flowise:快速实现智能体搭建。 BISHENG:主攻 tob 场景的开源 LLM 搭建平台,与 fastgpt 功能类似,但面向的客户不同,整体功能和部署成本更重。 Agent 构建平台: Coze:具有拓展强、好上手、不用出国等优点。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景。 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,Inhai 的 Agentic Workflow 将一整套工作流组合起来,每个工具在每一个节点执行一个任务。LangGPT 提示词框架应用了 CoT 完成从输入到思维链再到输出的映射。
2025-04-09
大模型就是指大语言模型吗?有哪些常见的非语言类大模型和小模型,两者的区别和联系是什么?
大模型并非仅指大语言模型。大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型存在以下区别: 1. 处理的信息类型不同:大型语言模型专注于文本信息,而大型多模态模型能处理多种信息类型。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,如文本翻译、生成、情感分析等;大型多模态模型可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型则需要多种类型数据。 当我们提到“小模型”时,是相对大型模型而言,规模较小。这些小模型通常是为完成特定任务而设计,比如最初用于图像分类,只能分辨是或不是某一个东西(如猫、狗)。 “小模型”在特定任务上表现出色,但“大模型”像多功能基础平台,能处理多种任务,应用范围广泛,拥有更多通识知识。 大模型并不拥有无限知识,其知识来源于训练过程中的有限数据,只能回答训练中见过或类似的问题,知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。 大型语言模型的运作机制主要是通过大量数据训练学习语言结构和模式,然后根据输入生成相应文本,类似于词语接龙游戏,永远在猜测下一个字符将要生成什么。
2025-03-16
请起草一份小白学习AI辅助修图的入门到精通的教程,提供学习大纲,包括从基本玩法到高级卡bug玩法,常见红海赛道,常见问题,注意事项,常见误区,避坑指南等等
以下是为您提供的小白学习 AI 辅助修图从入门到精通的教程大纲: 一、基础知识与基本玩法 1. 了解 AI 辅助修图的概念和基本原理。 2. 熟悉常见的 AI 修图工具和软件。 二、常见问题与注意事项 1. 风格局限性:如全是二次元风格,缺少适合特定需求的风格。 2. 图像叙事性不足:画出来的多为美少女看镜头,缺乏叙事内容。 3. 素材局限性:已有素材单一,图生图可行性低,训练泛化性差。 三、常见误区与避坑指南 1. 避免盲目依赖初始的 Embedding、CKPT 等方法,不断尝试和改进。 2. 注意训练集中人物朝向固定等问题,采取相应处理措施,如镜像处理。 四、从入门到精通的进阶玩法 1. 掌握不同的训练方法,如 Lora 等,以获得更理想的效果。 2. 学会引导 AI 画出具有前景后景区分明显的图像,如制作引导图。 五、高级卡 bug 玩法 探索一些非常规但有效的技巧和方法,以突破常规限制,实现更出色的修图效果。但需注意,此部分玩法可能存在一定风险和不确定性。 六、常见红海赛道 分析当前 AI 辅助修图在不同领域的竞争激烈程度和应用热点。 在学习过程中,还需了解以下 AI 相关的技术原理和概念: 1. 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈中学习。 深度学习参照人脑神经网络,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式。 LLM 为大语言模型,不同模型有不同擅长的任务。 3. 技术里程碑:2017 年 6 月谷歌团队发表的《Attention is All You Need》提出了 Transformer 模型。
2025-03-05
请起草一份小白学习AI应用(包括app和网站)的入门到精通的教程,提供学习大纲,包括从基本玩法到高级卡bug玩法,常见红海赛道,常见问题,注意事项,常见误区,避坑指南等等
以下是一份小白学习 AI 应用(包括 app 和网站)的入门到精通的教程,涵盖学习大纲、常见问题等方面: 一、学习大纲 1. 了解 AI 基本概念 阅读相关资料,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅 参考「」中的初学者课程,了解生成式 AI 等基础知识,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,包括图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试 理论学习后进行实践,巩固知识,尝试使用各种产品创作作品。 分享实践后的经验和成果。 5. 体验 AI 产品 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用体验。 二、常见红海赛道 目前,AI 在自然语言处理、图像识别、智能推荐等领域竞争较为激烈。 三、常见问题 1. 对复杂应用的需求理解不准确,导致产品出错。 2. 技术组件的配置和整合可能遇到困难。 四、注意事项 1. 注重基础知识的学习,打牢根基。 2. 实践过程中要耐心,遇到问题多尝试解决。 五、常见误区 1. 认为 AI 学习短期内就能精通,忽略了长期积累和实践的重要性。 2. 过度依赖现成的模型和工具,缺乏对原理的深入理解。 六、避坑指南 1. 在选择学习资源时,要注意其权威性和适用性。 2. 开发 AI 应用时,要充分考虑用户需求和实际场景,避免盲目跟风。 希望以上内容对您有所帮助,祝您在 AI 学习的道路上取得成功!
2025-03-05
请起草一份小白学习AI视频制作的入门到精通的教程,提供学习大纲,包括从基本玩法到高级卡bug玩法,常见红海赛道,常见问题,注意事项,常见误区,避坑指南等等
以下是一份小白学习 AI 视频制作从入门到精通的教程大纲: 一、基础玩法 1. 项目规划 确定短片主题和目标观众。 制定详细的制作计划。 2. 剧本创作 编写故事脚本。 设计角色和场景以及创意。 3. 分镜头脚本 根据脚本制作分镜头脚本,确定每个镜头的画面和动作。 4. 资源准备 准备动画制作所需的素材,包括背景、角色和音效。 5. 画面图片制作 利用 AI 出图工具,比如通过 ChatGPT、MJ、SD 等工具快速生成高质量的图片。 6. 视频制作 利用 AI 工具制作动画,通过 RUNWAY、Luma、Dreamina 等平台快速生成高质量的动画。 7. 后期剪辑 添加音效、配音和字幕,进行最终的剪辑和合成。 8. 发布和推广 将完成的动画短片发布到各大平台,并进行推广和宣传。 二、高级玩法 1. 写提示词 掌握有效的提示词撰写技巧,以获得更符合需求的生成结果。 2. 导入图片用 Mini Max、模型的首尾帧玩法等操作实现一镜到底效果。 3. 利用不同模型进行创作,如海螺无限生成。 4. 反复修改提示词以优化生成效果。 三、常见红海赛道 1. 创意广告类视频。 2. 短视频故事类。 四、常见问题 1. 生成效果不符合预期。 2. 工具操作不熟练。 3. 资源获取困难。 五、注意事项 1. 注重版权问题,合法使用素材和工具。 2. 不断学习和更新知识,跟上 AI 技术发展。 六、常见误区 1. 过度依赖 AI,忽略自身创意和审美。 2. 忽视视频的逻辑性和连贯性。 七、避坑指南 1. 提前了解不同工具的收费模式,避免不必要的费用支出。 2. 多参考优秀案例,避免重复常见错误。 希望这份大纲能帮助您在 AI 视频制作的学习道路上不断进步!
2025-03-04
DeepSeek常见应用技巧
DeepSeek 常见应用技巧包括以下方面: 1. 高阶能力调用: 文风转换矩阵,如作家风格移植(用鲁迅杂文风格写职场 PUA 现象)、文体杂交(将产品说明书改写成《史记》列传格式)、学术口语化(把这篇论文摘要翻译成菜市场大妈能听懂的话)。 领域穿透技术,如行业黑话破解(解释 Web3 领域的“胖协议瘦应用”理论)。 2. 场景化实战策略: 商业决策支持。 创意内容生成。 技术方案论证。 3. 效能增强技巧: 对话记忆管理,包括上下文锚定(记住当前讨论的芯片型号是麒麟 9010)、信息回溯(请复述之前确认的三个设计原则)、焦点重置(回到最初讨论的供应链问题)。 输出质量控制,如针对过度抽象(请具体说明第三步操作中的温度控制参数)、信息过载(用电梯演讲格式重新组织结论)、风格偏移(回归商务报告语气,删除比喻修辞)等问题的修正指令。 4. 特殊场景解决方案: 长文本创作,如分段接力法(先完成故事大纲→逐章扩展→最后进行伏笔校验)、逻辑粘合剂(确保新章节与前文的三处细节呼应)。 敏感内容处理,如概念脱敏法(用经济学原理类比说明网络审查机制)、场景移植法(假设在火星殖民地讨论该议题)。 Deepseek 时代提示词的针对性技巧: 1. 身份定位技巧,目的是让 AI 理解您的背景和专业水平,例如差的表述:“帮我写一篇营销方案”,好的表述:“作为一名刚入职的电商运营,需要为天猫美妆店铺制定 618 活动方案”。 2. 场景描述技巧,目的是提供具体的应用场景和限制条件,例如差的表述:“写一篇新品发布文案”,好的表述:“为新上市的儿童智能手表写一篇朋友圈文案,目标用户是 2535 岁的年轻父母,预算 3000 以内,需强调安全定位功能”。 3. 结构化输出技巧,目的是指定具体的输出格式和内容结构,例如差的表述:“分析最近的新能源汽车销量数据”,好的表述:“请用表格对比 2024 年 Q1 特斯拉、比亚迪的销量数据,包含以下维度:月度销量、同比增长、市场份额,并在表格下方总结三个关键发现”。 4. 分步骤提问技巧,目的是将复杂问题拆解为可管理的小任务,例如差的表述:“怎么做短视频运营?”,好的表述:“请分三步指导新手做美食短视频:前期准备:需要哪些设备和技能 拍摄阶段:关键场景和机位选择 后期制作:剪辑节奏和音乐配合建议”。 5. 反馈优化技巧,目的是通过追问获得更精准的答案,例如第一轮:“帮我做一份产品分析报告”,追问 1:“内容太专业了,能用更通俗的语言解释吗?”,追问 2:“可以增加一些具体的用户案例来支撑观点吗?”。 6. 深度思考引导技巧,目的是获得更深入的分析和见解。 以下是一些用户使用 DeepSeek 的实际情况: 帮我脑爆活动方案(AJ 杭州)。 会议纪要给它出方案思考非常到位,稍加修改就可以呈现高质量的会议总结。 本地搭超级 AI 助手(陈星北京)。 DS+飞书批量处理客户评论(Lily 温州)。 分析总结复盘内容。 生成专业专用软件详细使用过程,非常正确(兰州)。 辰、李意儿用。 变现当然。 Candice 代码编写。 帮我写小说框架。 让 ds 给出拓展市场的梳理角度和咨询梳理。 写党员的用自我批评用古诗改简历(苏州)。 学长刚蝈。 探索外太空。 大创苏州 a 文案胡泽华改简历。 园子。 写文案。 Forget,之前用过 deepseek 分析过感情问题,补充了对于心理学的一些空缺,了解了更多。 Ecfa 苏州一晚三个营销方案,Deepseek 一晚,干了之前一个月的活。 Yvonne 写论文。 AI 中医+心理咨询师。 AI 育儿,生图 AI 撰写提示词辅食(北京,赵赵)。 帮我。 帮我生帮。 短视频脚本。当百度用。 写方案,做图。 用 a 帮我。 南京得一写小红书笔记,八字算命。 写周报用。 帮我做设计头脑风暴。 上海 BaoBig 粒。 Guigui 北京。 算命。 分析。 柯柯武汉做网站葉用。 投喂大量的 deepseek。
2025-03-01