Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

未来有关人工智能行业的职业有哪些

Answer

人工智能行业的快速发展带来了多样化的职业机会。以下是一些与人工智能行业相关的未来职业:

  1. AI研究员:在机器学习、深度学习、自然语言处理等领域进行基础研究。

  2. 数据科学家:利用统计学、数据挖掘和机器学习技术从大数据中提取知识和见解。

  3. 机器学习工程师:设计、开发和实施机器学习模型,以解决复杂的预测和分类问题。

  4. 深度学习工程师:专注于使用神经网络解决图像识别、语音识别等高级任务。

  5. 计算机视觉工程师:开发使计算机能够“看”和理解图像和视频内容的系统。

  6. 自然语言处理工程师:研究和开发处理和理解人类语言的技术。

  7. AI产品经理:负责人工智能产品的规划、开发和市场推广。

  8. AI伦理学家:研究人工智能对社会、伦理和法律的影响,并制定相关准则。

  9. AI教育者:在学术界或工业界教授人工智能相关的课程和工作坊。

  10. 机器人工程师:设计和开发智能机器人,包括软件和硬件。

  11. 智能系统架构师:负责构建和优化人工智能系统的架构。

  12. AI顾问:为企业和组织提供人工智能解决方案和战略规划。

  13. 语音识别工程师:专注于开发语音识别和语音合成技术。

  14. 推荐系统工程师:构建个性化推荐系统,用于电子商务、媒体内容等。

  15. AI测试工程师:负责测试和验证人工智能系统的性能和准确性。

  16. 知识图谱工程师:构建和管理知识图谱,用于增强搜索和推荐系统。

  17. AI安全专家:专注于保护人工智能系统免受攻击和滥用。

  18. 边缘计算AI工程师:在边缘设备上部署和优化AI模型,以实现实时处理。

  19. AI法律顾问:了解与人工智能相关的法律法规,并提供法律咨询。

  20. AI医疗顾问:结合人工智能技术,提供医疗影像分析、诊断建议等。

  21. 自动驾驶工程师:开发自动驾驶汽车的感知、决策和控制系统。

  22. AI创意设计师:利用AI技术进行艺术创作、音乐制作或游戏设计。

  23. AI芯片设计师:设计专用于执行机器学习任务的硬件加速器。

  24. AI项目管理专家:负责人工智能项目的规划、执行和监控。

  25. AI业务分析师:分析业务需求,并确定人工智能解决方案的潜在价值。

这些职业覆盖了从技术开发到战略规划、从产品设计到市场推广的各个方面,随着AI技术的不断进步和应用领域的拓展,未来可能还会出现更多新的职业角色。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
有没有职业经理人智能体
在 AI 领域,存在决策智能体。例如,Anterior 公司开发的临床决策引擎用于自动化理赔提交审核,其智能体遍历决策树并利用语言模型评估相关文件。此外,Norm AI 为监管合规打造智能体,Parcha 为 KYC 建立智能体。 在传统职业领域,“Agent”一词涵盖多种职业角色。在商业领域,随着大航海时代及全球贸易兴起,“Agent”的角色变得重要,如贸易代理和公司代理商。工业革命期间,其职能拓展到保险、房地产等新兴行业。19 世纪,政府及情报领域也广泛使用,如情报特工和便衣警察。 在现代(20 世纪至 21 世纪),“Agent”在娱乐和体育行业指艺人经纪人和运动员经理等,负责安排试镜、合同谈判和规划职业生涯。还包括劳务代理和招聘代理(猎头),劳务代理提供劳动力匹配服务,猎头为公司招募高技能或高级管理职位的专业人士。从词源和历史变迁看,“Agent”具有行动和替身的含义,多数情况下是替代他人做事。但目前尚未有明确指向“职业经理人智能体”的特定概念。
2025-04-08
用AI做职业测评
以下是关于用 AI 做职业测评的相关信息: 职业规划导师(校招版)功能: 1. 职业趋势分析:基于最新市场数据和行业报告,协助用户分析自身专业或职业的前景,助其了解未来职业趋势。 2. 技能评估与提升:通过测评工具评估用户当前职业兴趣,提供针对性学习资源和课程建议,帮助提升专业技能。 3. 职业匹配与推荐:根据用户兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化职业建议。 4. 职业发展规划:结合用户个人情况和市场需求,制定详细的职业发展计划,包括短、中、长期目标,帮助用户在 AI 时代找到职业定位。 后续使用场景及商业化前景: 1. 学生和应届毕业生: 职业选择和规划:了解 AI 技术在不同职业中的应用,评估兴趣和技能,选择合适路径并制定规划。 技能提升:根据职业目标获得个性化学习建议和资源,提升 AI 领域技能。 2. 职场新人和职业转换者: 职业发展指导:制定职业发展计划,明确短期和长期目标。 职业转型支持:提供转型路径和必要技能培训资源,帮助顺利转型。 3. 企业: 人才招聘和培养:评估应聘者 AI 技能水平,选择合适候选人,为现有员工提供职业发展规划和技能提升建议,培养内部 AI 人才。 员工职业发展:为员工制定个性化职业发展计划,提供持续指导和培训,提升满意度和留任率。 4. 教育机构: 职业指导服务:作为学生职业指导一部分,帮助了解 AI 领域职业机会和发展路径,提升就业率。 课程设计和优化:根据市场需求和学生职业规划优化课程设置,提供针对性 AI 技能培训。 5. 职业咨询师: 辅助工具:使用产品为客户提供更精准职业规划建议和技能评估,提升服务质量和效率。 数据支持:基于产品提供的市场数据和职业趋势分析,为客户提供更全面和前瞻性指导。 BotID:7388833785208504358
2025-03-31
如何让AI帮我分析职业选择
以下是利用 AI 帮您分析职业选择的一些方法: 1. 利用“长远思考思维模型”: 职业目标和个人价值观的一致性:认清长期职业目标与个人价值观是否相符,工作应与生活目标和信念相协调,考虑未来几年内希望实现的目标,思考其如何反映核心价值观。 职业成长和学习机会:关注职业成长和持续学习,在不断变化的技术领域中保持竞争力,思考未来几年市场受欢迎的技能,通过学习提升职业价值。 生活和工作的平衡:考虑工作对个人生活的影响,包括家庭、健康和兴趣爱好,可持续的职业道路应支持整体生活质量。 适应性和灵活性:考虑市场和技术变化,拥有适应和灵活调整职业路径的能力,以利用新兴机会。 2. 借助 AI 模型模拟市场反应来辅助决策:例如,个人在做职业选择时让 AI 分析不同选择下职业发展的前景。但重要决定最终由人拍板,AI 作用在于提供依据和建议。这一过程中,人类的批判性思维不可或缺,需要对 AI 输出进行评估,筛选有意义部分,并纳入自主判断。 3. 突破常规思维,选择如“破束缚思维模型”:挑战现有的职业路径设想,探索非传统的职业道路或角色,考虑将技能应用于不同领域,不要局限于传统职业路径,考虑跨领域工作机会或开发新技能以适应不同职业角色。 综合这些思维模型,建议您在进行职业规划时,不仅考虑当前的职业机会和挑战,还要考虑长期的职业发展、个人兴趣和潜在的市场需求。同时,敢于突破常规,探索新的可能性,可能会为您的职业生涯带来意想不到的转机。
2025-03-31
AI如何助力职业发展
AI 可以从以下几个方面助力职业发展: 1. 职业规划: 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和目标,推荐适合的职业路径和职位,提供个性化建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 2. 成为“超级个体”: 效率提升与技能拓展:个人借助 AI 工具学会新技能,参与跨职能工作,成为“全能型人才”。 专注深耕专业技能:AI 接管浅层、重复工作,让人有更多时间修炼深层次专业技能。 提高绩效与解锁可能性:掌握 AI 辅助技能,不仅提高当下绩效,还为自己创造更多发展机会。 放大个人价值:在效率革命推动下,个人利用 AI 成倍放大时间和精力价值,如个人创业者完成全链条工作,教师扩大授课规模,科研人员产出更多数据等。 3. 技术应用与转型: 企业运营:将 AI 前沿技术应用于企业运营,帮助企业完成数字化转型,优化运营效率。 个人成长:协助个人利用 AI 重构知识体系,实现个人成长,在 AI 时代轻松前行。
2025-03-18
未来AGI新职业有哪些
未来 AGI 可能催生以下新职业: 1. 与 AGI 技术安全和伦理相关的工作,如负责确保 AGI 可控性和与人类价值对齐的专业人员。 2. 参与公共政策制定和全球合作的“政策顾问”和“外交官”,协助制定 AGI 相关的规则和标准。 3. 由于 AGI 对劳动力市场的冲击,可能会出现帮助劳动者快速适应职业转换、学习新技能的职业培训师和指导顾问。 同时,AGI 的广泛应用将对劳动力市场产生巨大冲击,许多传统职业可能被取代,但历史经验表明,每次技术革命虽淘汰旧岗位,但也会创造全新岗位。例如汽车取代马车夫催生了汽车产业的新工作,AGI 时代也有望出现我们今日难以想象的新职业,整体上有望维持就业的动态平衡。不过在调整过渡期,许多劳动者将面临前所未有的职业转换压力,需要快速适应并学习新技能,转向机器不能完全胜任的任务。
2025-03-17
有什么用于职业规划咨询的ai
以下是一些用于职业规划咨询的 AI: 1. 职业规划导师(校招版): 功能包括职业趋势分析,基于最新市场数据和行业报告,协助分析自身专业或职业的前景。 技能评估与提升,通过测评工具评估职业兴趣,提供学习资源和课程建议。 职业匹配与推荐,根据兴趣、技能和目标推荐适合的职业路径和职位。 职业发展规划,制定详细的短、中、长期计划,帮助在 AI 时代找到职业定位。 2. Prodigy AI:可以为您提供职业建议。 3. 教育领域的 AI 可以协助评估学生学习情况,为职业规划提供建议。例如针对学生情况以及兴趣定制化学习内容等。 此外,在企业运营、金融/保险等行业的 AI 应用中,也可能包含与职业规划咨询相关的功能。
2025-03-05
我想要自学AI相关的知识,但不知道从哪里开始,需要一个行动方案,我未来想做一个ai产品经理
以下是为您提供的自学 AI 知识并成为 AI 产品经理的行动方案: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 掌握相关技能: 了解目前 AI 提示词工程师岗位的招聘技能要求,例如: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 4. 了解产品经理工作: 调研市场、思考需求、转化需求、思考解决方案、设计解决方案、分配任务、进行测试、实现解决方案。 像善用提示词工程的人一样,将需求抽象再具象成产品。 总之,要成为 AI 产品经理,需要不断学习和实践,适应行业的发展和变化。
2025-04-12
MCP是什么?未来的发展趋势如何?
MCP(模型上下文协议)是一种于 2024 年 11 月推出的开放协议,允许系统以跨集成的泛化方式为 AI 模型提供上下文。该协议定义了 AI 模型如何调用外部工具、获取数据和与服务交互。 MCP 已经在重塑 AI 智能体和代理的生态系统。其未来的发展趋势取决于如何应对基础性挑战,如果处理得当,可能成为 AI 与工具交互的默认接口,并开启新一代自主、多模态、深度集成的 AI 体验。如果被广泛采用,它可能代表工具构建、消费和货币化方式的转变。 今年将是关键的一年,可能会面临一些关键问题,比如是否会看到一个统一的 MCP 市场崛起,AI 代理的认证是否会变得无缝,多步执行能否被正式纳入协议等。 MCP 从 LSP(语言服务器协议)中获取灵感,超越 LSP 的地方在于其以智能体为中心的执行模型,LSP 主要是被动响应,而 MCP 专门为支持自主的 AI 工作流而设计,根据上下文,AI 智能体可以决定使用哪些工具、按什么顺序以及如何将它们串在一起来完成任务。MCP 还引入了人工参与的功能,允许人类提供额外的数据并批准执行。
2025-04-10
未来ai发展有什么方向性的可能,尤其对于产品运营的启发
未来 AI 发展具有以下方向性的可能,对产品运营有如下启发: 1. 从通用能力到专业化细分: 早期通用型 AI 产品如 ChatGPT 吸引大量用户,但难以满足多样化需求。 如今越来越多 AI 产品专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理(各种 AI 配音、音乐生成工具),每个细分领域的产品不断提升核心能力,为用户提供更精准和高质量服务。 2. 商业模式的探索与创新: ToB 市场深耕,如针对内容创作者的 ReadPo,为专业用户提供高效工具。 新型广告模式,如天宫搜索的“宝典彩页”,允许用户认领主题词实现变现。 AI 产品从技术展示向解决用户痛点和创造商业价值转变。 3. 公司未来的样貌: AI 是生产力革命,将通过 AI 网络协同工作,推动对新型基础设施的需求。 未来公司建设可能成为 AI Agent 的工作,公司可能像神经网络一样工作。 下一代公司规模可能更小,但数量会增加,具有新的组建方式、所有权和管理结构。 未来公司将需要解决知识管理、内容生成、信任、安全和身份验证等难题的企业产品,软件数量将不断扩张和变化,代码生成和软件代理业务将更定制化和快速迭代。 4. 具体应用场景: 企业应用:提示词工程重要性凸显,带来超级个性化服务、预测性决策能力、自动创新设计能力、自动识别和优化内部流程。 交通领域:自动驾驶汽车提高安全性和效率,优化信号灯和流量。 物流配送:优化路线和计划,降低成本,包括无人机送货。 教育:提供个性化学习体验。 农业:分析农田数据提高产量和质量。 人工智能时代下最重要的三个基石是数据、算法和算力,相关资源如: 算力: 数据:
2025-04-10
未来ai发展尤其对于腾讯的发展有什么方向性的可能
以下是关于腾讯在未来 AI 发展方向的一些可能: 1. 2024 年数字科技趋势:从连接、交互、计算和智能四个维度,对 100 多项未来技术和重点方向给出趋势性判断。包括星地直连的卫星互联网、垂直起降飞机的未来交通网、能源、信息和交通的多网协同,使未来网络连接的广度和深度都迎来无限可能。报告下载地址:(发布时间:2024/01/23) 2. 金融业大模型应用:强调大模型技术对金融业带来的革命性影响,包括提高效率、降低成本、创新服务和优化风险管理等方面。通过深入分析多个案例,展示大模型在金融服务、风险管理、客户服务和营销策略等领域的应用,同时指出实施大模型技术面临的挑战,如数据隐私、算法偏见和监管合规等。报告下载地址:(发布时间:2023/11/30) 3. 在基础模型和开源生态方面: 合成数据方面:量变不能直接产生质变,质量和结构至关重要;需要从扩充数据转向创造知识,通过系统化方法提升训练数据质量。 游戏开发、影视制作、工业设计、VR 构建等领域:面临数据积累和模型优化以实现产业赋能的挑战,当前瓶颈包括训练数据稀缺和泛化能力有限,未来方向可能是 GANs 数据生成和迁移学习优化。 材质还原方面:基于几何模型的空间结构特征生成真实感材质与纹理映射,纹理生成方法多元化,核心技术不断突破,AI 赋能加速发展,应用场景持续扩展。
2025-04-10
我想在未来从事ai事业,现在该如何学习ai,
如果您想在未来从事 AI 事业,以下是一些学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 AI 的技术历史和发展方向,目前最前沿的技术点包括: 1. 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-26
想要学习AIGC,推荐下相关的行业大V
以下是一些 AIGC 相关的行业大 V 推荐: :归臧整理的 AIGC 周刊,关注 AI 的朋友每周必读。 :连续创业者,Prompt 版块共建者。 。 :“互联网的那点事”,微博互联网观察家。 ZHO:建筑师|ComfyUI 设计师。 :AIGC 社区野神殿创始人。 。 赛博禅心:最新最快的 AI 资讯,作者大聪明。 张蔚:华兴资本经理,架构和投资版块共建者。 :热爱分享,永远好奇,AI 高质量社群组织者。 汗青:产品经理|AI 设计师。 此外,还有北京分队中的一些相关人士: Lucky:在信息技术领域公司任职 7 年+,目前担任江西 5 家公司企业级 information security 管理,3 个地区千万级企业级 confidentiality Project 管理,5 个地区上海、合肥、苏州、南京、深圳 information security 体系建设管理顾问,目前一只 20 人+AI 项目团队,终身学习践行者。能提供 AI 相关技术的所有项目,包括 AI 图片视频、2D 动画视频、AI prompt、AI 提示词企业培训、AI 大模型、AI agent、数字人等产品。坐标南昌。 粉仔:目前抖音上的 AIGC 相关博主,粉丝画像特别受到中老年妇女们的喜爱,俨然成了她们的偶像。熟悉目前主流的 AIGC 工具。坐标北京。 sam:做技术行业,热爱互联网和 AI 技术。 海地老师:AI 影视共创社北京分社的负责人。逍遥游的制片人和编剧。 Sunkim:自由体验设计师,前保利威设计负责人,先后在新浪、百度、脉脉做体验设计工作。对 AIGC 感兴趣,目前在做 AI 口语教育类产品(上线了),和 web3 相关设计,以及跟大伙学习 AI 视频制作。 胡凯翔:国企工作 10 余年,后沉迷 AI 提示词研究编写,小七姐第一期课程毕业生,微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册,使用 AI 辅助阅读和开智,标书、论文的写作,玄学取名和头像设计,目前沉迷个人知识体系的搭建和离谱村系列视频的共创。 陈皓/Robin:目前在家科技公司从事产品工作,主要和 Ai,3D 视觉内容+数字人相关;有过知识付费和海外教育的创业经历。
2025-04-14
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13
零基础如何学习AI从而进入AI行业
对于零基础想要学习 AI 从而进入 AI 行业的人,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI 可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-04-12
有AI在各个行业的案例吗
以下是 AI 在各个行业的一些应用案例: 汽车行业: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 2. 车辆安全系统:AI 用于增强自动紧急制动、车道保持辅助和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 其他行业: 1. 企业运营:包括日常办公文档材料撰写整理、营销对话机器人、市场分析和销售策略咨询等。 2. 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 3. 游戏/媒体:定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 4. 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 5. 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2025-04-12
ai音乐的行业研究报告
以下是为您提供的关于 AI 音乐的行业研究报告相关内容: 量子位智库发布的《AI 音乐应用产业报告(2024 年)》指出,AI 音乐生成技术通过学习大量音乐数据,已能创作出具有一定艺术性的音乐作品。技术发展迅速,音频模型尤其受到关注,因其能直接生成流畅自然的音乐。AI 音乐简化了音乐制作流程,为音乐产业带来变革。流媒体平台可能成为商业化的最大受益者,而传统音乐工程可能面临冲击。数据和情感表达的精准把控是技术迭代和商业化的关键。报告还提到,AI 音乐生成产品如 Suno 和 Udio 等,正在推动“人人皆可创作”的时代,同时面临技术、音乐属性和商业化等方面的挑战。 《专访 Luma AI 首席科学家:我们更相信多模态的 Scaling Law》中,Luma AI 首席科学家 Jiaming Song 在访谈中介绍了他们新推出的视频生成模型 Dream Machine。该模型旨在通过提升动作幅度来改善用户体验,以满足市场对视频生成的需求。Luma 的转型从 3D 生成到视频生成,是为了实现更高维度的 4D 表现,视频被视为实现更好 3D 效果的有效途径。Jiaming 指出,视频生成模型具备强大的 3D 一致性和光学效果,能够直接将图像转化为视频,再进一步转换为 3D 模型。 AI 音乐|2.21 资讯中,包含生成式人工智能对音乐领域的影响研究、谷歌推出 MusicRL:生成符合人类偏好的音乐、使用 Beatoven AI 的文生音乐功能给视频配乐、HyperGANStrument:使用音高不变超网络进行乐器声音合成和编辑、Stability AI 发布 Stable Audio AudioSparx 1.0 音乐模型等内容。 2024 年度 AI 十大趋势报告中提到,AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。AI 生成音乐作为音乐资产在游戏制作和发行环节使用都是非常可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。同时,AI 还能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,许多充满灵感的开发者正在尝试将 AI 作为游戏玩法的一环,促进游戏产业变革。 相关报告链接: 《AI 音乐应用产业报告(2024 年)》:https://waytoagi.feishu.cn/record/YoicrOScreZ7scct1Z3ciDM7nAd 生成式人工智能对音乐领域的影响研究报告:https://www.gema.de/documents/d/guest/gemasacemgoldmediaaiandmusicpdf
2025-04-11
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10