Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

通过概要设计文档生成代码

Answer

以下是通过概要设计文档生成代码的步骤:

  1. 身份设置:您作为一个数据格式生成器,会收到一些接口定义文档,并将其转换成 umi 中 mock 的数据格式。注意事项包括需把标题放在 url 的上方并注释起来,生成的数据放在一个代码块中方便复制,以及引入“import mockjs from 'mockjs';”来模拟数据。
  2. 数据格式处理:由于 chatGPT 的 token 长度有限制,一次不能输入太多,并且上下文理解能力长度也有限制,所以把原始文档拷贝到 typora 中,删除不必要的内容。拷贝到 typora 中的好处是,可以把文档内容转成 markdown 格式,如果内容中包含表格文本拷贝到 GPT 进行识别。
  3. 让 GPT 转换数据:把过滤后的 markdown 数据发送给 ChatGPT,并让它生成数据。由于生成的内容,ChatGPT 无法一次输出。所以需要让它继续,并且提醒它把代码放在一个代码块中。
  4. 本地测试:完成上述步骤后进行本地测试。

在中后台项目中,经常需要核对大量字段,一个列表有几十个字段,每个字段又有很多属性,人工核对费时且易出错。产品给到的表格,每个字段对应的设置项,可直接转换成 js 对象。若产品写的原型文档不能把表格直接生成 csv,比如在语雀文档中插入的 excel,可以先把表格拷贝到腾讯文档的表格中,然后把标题修改成需要的对应 key,最后导出 csv 文件。

Content generated by AI large model, please carefully verify (powered by aily)

References

开发:ChatGPT+程序员10倍提效

这是删除整理后的数据,只包含了生成mock的必要数据。接口名称、接口url,请求方式,返回示例。实例后面第三步:让GPT转换数据把过滤后的markdown数据发送给ChatGPT,并让它生成数据。由于生成的内容,ChatGPT无法一次输出。所以下面我们需要让它继续,并且提醒它把代码放在一个代码块中。第四步:本地测试ok

开发:ChatGPT+程序员10倍提效

痛点:怎么快速的把后端定义的接口文档变成前端项目中的Mock数据,前端可以直接请求这个接口并返回模拟数据呢?我的项目使用的[umi框架](https://v3.umijs.org/zh-CN/docs/mock#%E7%BA%A6%E5%AE%9A%E5%BC%8F-mock-%E6%96%87%E4%BB%B6),内置了mock数据服务,所以我们只要把相关的接口umi的要求生成代码即可。下面我们开始吧。解决方案:第一步:身份设置你是一个数据格式生成器,我会给你一些接口定义文档。你会转换成umi中mock的数据格式。注意事项:1.需要把标题放在url的上方,并注释起来。2.生成的数据,放在一个代码块中方便复制。3.引入:import mockjs from 'mockjs';来模拟数据第二步:数据格式处理这里为什么要进行数据格式处理呢?因为chatGPT的token长度有限制,一次不能输入太多,并且上下文理解能力长度也有限制。所以我把原始文档拷贝到typora中,把不必要的内容删除。拷贝到typora中的好处是,可以把文档内容转成markdown格式,如果内容中包含表格文本拷贝到GPT进行识别。

开发:ChatGPT+程序员10倍提效

副标题:无需手动转换!ChatGPT让数据格式转换成为小菜一碟!场景说明:中后台项目经常需要核对大量的字段,一个列表有几十个字段,每个字段又有很多的属性。人工核对非常费时,而且容易出错。产品会给到我们一份表格,每个字段对应的设置项。我们只需要把这个表格直接转换成js对象就非常方便。小技巧如果你们产品写的原型文档,不能把表格直接生成csv,比如在语雀文档中插入的excel。可以先把表格拷贝到腾讯文档的表格中,然后把标题修改成你需要的对应key。如下图,最后导出csv文件。

Others are asking
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
国内好用的文档排版AI工具
以下是国内一些好用的文档排版 AI 工具: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 3. Latex:虽不是纯粹的 AI 工具,但在学术论文排版方面广泛使用,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 此外,还有一些与文档相关的 AI 工具,如文章润色工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 制作 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-13
自动翻译英文文档
以下是关于您提出的“自动翻译英文文档”的相关内容: 一个基于 Python 的网页截图工具具有自动翻译英文内容为中文的功能。 在 Cursor 编辑器中,可直接在 Cursor Chat 里提出将中文版博客翻译成英文的要求,它会给出英文版本的文章,还能自动对比中英文文档并高亮差别,方便对英文进行直观修改,最终完成翻译。
2025-04-11
AI文本工具操作文档
以下是为您整理的一些 AI 文本工具的操作文档: AIGC 论文检测网站 1. 功能:提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。 使用方法:将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 2. GPTZero 功能:专门设计用于检测由 GPT3 生成的内容,适用于教育和出版行业。 使用方法:上传文档或输入文本,系统会分析并提供报告,显示文本是否由 GPT3 生成。 3. Content at Scale 功能:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。 使用方法:将文本粘贴到在线检测工具中,系统会分析并提供结果。 【TecCreative】帮助手册 1. 创意工具箱 AI 字幕 智能识别视频语言并生成对应字幕,满足海外多国投放场景需求。 操作指引:点击上传视频——开始生成——字幕解析完成——下载 SRT 字幕。注意:支持 MP4 文件类型,大小上限为 50M。 文生图 仅需输入文本描述,即可一键生成图片素材,海量创意灵感信手拈来! 操作指引:输入文本描述(关键词或场景描述等)——选择模型(注意 FLUX 模型不可商用)——开始生成——下载。 AI 翻译 支持多语种文本翻译,翻译结果实时准确,助力海外投放无语言障碍! 操作指引:输入原始文本——选择翻译的目标语言——开始生成。 TikTok 风格数字人 适配 TikTok 媒体平台的数字人形象上线,100+数字人模板可供选择,助力 TikTok 营销素材生产无难度! 操作指引:输入口播文案——选择数字人角色——点击开始生成。视频默认输出语言和输入文案语言保持一致,默认尺寸为 9:16 竖版。 多场景数字人口播配音 支持生成不同场景下(室内、户外、站姿、坐姿等)的数字人口播视频,一键满足多场景投放需求! 操作指引:输入口播文案——选择数字人角色和场景——选择输出类型——点击开始生成。视频默认输出语言和输入文案语言保持一致。 工具教程:AI 漫画 Anifusion 网址:https://anifusion.ai/ ,twitter 账号:https://x.com/anifusion_ai 功能: AI 文本生成漫画:用户输入描述性提示,AI 会根据文本生成相应的漫画页面或面板。 直观的布局工具:提供预设模板,用户也可自定义漫画布局,设计独特的面板结构。 强大的画布编辑器:在浏览器中直接优化和完善 AI 生成的艺术作品,调整角色姿势、面部细节等。 多种 AI 模型支持:高级用户可访问多种 LoRA 模型,实现不同的艺术风格和效果。 商业使用权:用户对在平台上创作的所有作品拥有完整的商业使用权,可自由用于商业目的。 使用案例: 独立漫画创作:有抱负的漫画艺术家无需高级绘画技能即可将他们的故事变为现实。 快速原型设计:专业艺术家可以在详细插图之前快速可视化故事概念和布局。 教育内容:教师和教育工作者可以为课程和演示创建引人入胜的视觉内容。 营销材料:企业可以制作动漫风格的促销漫画或用于活动的分镜脚本。 粉丝艺术和同人志:粉丝可以基于他们最喜欢的动漫和漫画系列创作衍生作品。 优点: 非艺术家也可轻松进行漫画创作。 基于浏览器的全方位解决方案,无需安装额外软件。 快速迭代和原型设计能力。 创作的全部商业权利。 缺点:(未提及)
2025-04-11
图片文字转文档
图片文字转文档可以通过以下方式实现: coze 插件中的 OCR 插件: 插件名称:OCR 插件分类:实用工具 API 参数:Image2text,图片的 url 地址必填 用途:包括文档数字化、数据录入、图像检索、自动翻译、文字提取、自动化流程、历史文献数字化等。例如将纸质文档转换为可编辑的电子文档,自动识别表单、票据等中的信息,通过识别图像中的文字进行搜索和分类,识别文字后进行翻译,从图像中提取有用的文字信息,集成到其他系统中实现自动化处理,保护和传承文化遗产。 插件的使用技巧:暂未提及。 调用指令:暂未提及。 PailidoAI 拍立得(开源代码): 逻辑:用户上传图片后,大模型根据所选场景生成相关的文字描述或解说文本。 核心:包括图片内容识别,大模型需要准确识别图片中的物体、场景、文字等信息;高质量文本生成,根据图片生成的文字不仅需要准确,还需符合专业领域的要求,保证文字的逻辑性、清晰性与可读性。 场景应用: 产品文档生成(电商/零售):企业可以利用该功能将商品的图片(如电器、服饰、化妆品等)上传到系统后,自动生成商品的详细描述、规格和卖点总结,提高电商平台和零售商的商品上架效率,减少人工编写文案的工作量。 社交媒体内容生成(品牌营销):企业可使用图片转文本功能,帮助生成社交媒体平台的营销文案。通过上传产品展示图片或品牌活动图片,模型可自动生成具有吸引力的宣传文案,直接用于社交媒体发布,提高营销效率。 法律文件自动生成(法律行业):法律行业可以使用图片转文本技术,自动提取合同、证据材料等图片中的文本信息,生成法律文件摘要,辅助律师快速进行案件分析。
2025-04-11
cursor 长文档处理长文档
以下是关于 Cursor 长文档处理的相关信息: UI 用户界面: 当 Cursor 仅添加其他文本时,补全将显示为灰色文本。如果建议修改了现有代码,它将在当前行的右侧显示为 diff 弹出窗口。 您可以通过按 Tab 键接受建议,也可以通过按 Esc 键拒绝建议。要逐字部分接受建议,请按 Ctrl/⌘→。要拒绝建议,只需继续输入,或使用 Escape 取消/隐藏建议。 每次击键或光标移动时,Cursor 都会尝试根据您最近的更改提出建议。但是,Cursor 不会始终显示建议;有时,模型预测不会做出任何更改。 Cursor 可以从当前行上方的一行更改为当前行下方的两行。 切换: 要打开或关闭该功能,请将鼠标悬停在应用程序右下角状态栏上的“光标选项卡”图标上。 @Docs: Cursor 附带一组第三方文档,这些文档已爬取、索引并准备好用作上下文。您可以使用@Docs 符号访问它们。 如果要对尚未提供的自定义文档进行爬网和索引,可以通过@Docs>Add new doc 来实现。粘贴所需文档的 URL 后,将显示相应模式。然后 Cursor 将索引并学习文档,您将能够像任何其他文档一样将其用作上下文。 在 Cursor Settings>Features>Docs 下,您可以管理已添加的文档,包括编辑、删除或添加新文档。 @Files: 在 AI 输入框中(如 Cursor Chat 和 Cmd K),可以使用@Files 引用整个文件。如果继续在@后键入,将在策略之后看到文件搜索结果。 为确保引用的文件正确,Cursor 会显示文件路径的预览,这在不同文件夹中有多个同名文件时尤其有用。 在 Cursor 的聊天中,如果文件内容太长,Cursor 会将文件分块为较小的块,并根据与查询的相关性对它们进行重新排序。
2025-04-10
学习路径文档
以下是为您提供的新手学习 AI 的路径文档: 首先,了解 AI 基本概念。建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 然后,开始 AI 学习之旅。在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有可能获得证书。 接着,选择感兴趣的模块深入学习。AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。特别建议您掌握提示词的技巧,它上手容易且很有用。 之后,进行实践和尝试。理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 最后,体验 AI 产品。与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 此外,雪梅 May 的 AI 学习经验也值得参考。May 发现自己的学习路径是:迈出第一步→大量的学习输入→疯狂的模仿→开始自己创造→学的越来越宽越来越杂→积累的量变产生质变→开始分享。特别是学习 coze 的路径:输入→模仿→自发创造,这是她真实实践下来之后发现的学习规律。May 还提到,虽然费曼学习法告诉我们,学习最好的方式是教会别人,但在一开始学习 AI 时,自学和输入为主也是可行的。回想起来,如果能量更足、更有勇气,可以更早地开始输出倒逼输入。不过不要为难自己,只要迈开脚步,就是进步。
2025-04-09
如果我要分析代码功能
如果您要分析代码功能,可以参考以下步骤: 1. 准备工作: 分析要拷贝页面的技术栈,可通过打开 https://www.wappalyzer.com/ 输入要分析的网站地址获取。 截图要克隆的网页。 分析页面功能,如顶部导航栏、页面主体区域(包括分类在左边、文章列表在右边、标题位置、文章卡片展示位置、文章列表和分类区域)、底部导航栏。 2. 开始克隆出效果,并逐渐完善: 根据分析拆分后续要实现的内容,如先实现文章列表部分和底部导航栏。 对于文章列表部分,可使用提示词根据图片实现,注意不要直接点击全部接受,先看效果,不符合需求可拒绝或让 AI 解释新增代码的作用。 对于左侧菜单栏,可通过提示词实现,如要求内容是文章的分类,在页面滚动时菜单会吸顶。若出现异常,可选中所有异常添加到对话,让 AI 解决。 可让 AI 添加注释解释每段代码对应的功能,以便精准提出修改建议。 明确提示词,说清楚要实现的功能的位置、大小、效果。 3. 对于 AI Review(测试版): 这是一项可查看代码库中最近更改以捕获潜在错误的功能。 您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天获取详细信息。 为让其更有利,您可为 AI 提供自定义说明以专注于特定方面,如性能相关问题。 目前有几个选项可供选择进行审核,如查看工作状态、查看与主分支的差异、查看上次提交。
2025-04-09
代码可视化
以下是关于代码可视化的相关内容: 常用的图表、公式和结构可视化代码语言及工具: |名称|用途|举例| |||| |AsciiMath|数学公式和方程表示|x2+y^2=r^2| |Graphviz|绘制图形、流程图|digraph G{A>B;B>C;}| |PlantUML|流程图、序列图、类图等|@startuml Alice>Bob:Hello| |ChemDraw XML|化学分子式表示|<molecule><atom>H</atom></molecule>| |OpenSCAD|3D CAD 设计|cube| |Circuitikz|电路图|\\begin{circuitikz}\\draw;\\end{circuitikz}| |AsciiDoctor=1.732| |PGF/TikZ|科学和工程图、几何图形|\\draw;| |KaTeX|数学公式快速渲染|C=\\pm\\sqrt{a^2+b^2}| ChatGPT 的代码解释器在数据分析与可视化方面的应用: 在现代企业和研究环境中,ChatGPT 的代码解释器插件通过支持强大的数据科学库如 pandas 和 matplotlib,极大地简化了数据分析和可视化过程。用户可以直接通过自然语言请求,指导 ChatGPT 进行数据操作和生成图表。例如,市场分析师可以分析产品销售数据并展示不同地区的销售表现,环境科学家可以分析过去十年的气温变化数据。但需注意,如果图示是中文的,可能显示不了,需要上传字体文件上去,此问题暂时还未解决。 GPT4 在编程和数据可视化方面的能力: 为评估 GPT4 在更真实的设置中编写代码的能力,设计了端到端的与数据可视化、LATEX 编码、前端开发和深度学习相关的真实世界编程挑战。在数据可视化任务中,要求 GPT4 和 ChatGPT 从上表的 LATEX 代码中提取数据,并根据与用户的对话在 Python 中生成图形。虽然两者都能正确提取数据,但 ChatGPT 无法生成所需图形,而 GPT4 能对所有用户请求做出适当响应,将数据调整为正确格式并适应可视化效果。
2025-04-09
基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。这个应该怎样使用呢
很抱歉,目前没有关于 Randoop 工具使用方法的相关内容。您可以通过以下途径获取更详细的信息: 1. 官方文档:访问 Randoop 的官方网站,查找其提供的详细使用说明和教程。 2. 技术论坛:在相关的技术论坛上搜索关于 Randoop 使用的讨论和经验分享。 3. 开源社区:参与开源社区中关于 Randoop 的交流,向其他开发者请教。
2025-04-08
最好的代码模型是?
目前对于“最好的代码模型”没有一个绝对的定论。以下为您介绍一些常见且受到关注的代码模型: 许多人认为 3.5 Sonnet 是较好的代码模型,但它没有相关论文。 开放代码模型方面,您可以从 DeepSeekCoder(https://ar5iv.labs.arxiv.org/html/2401.14196?_immersive_translate_auto_translate=1)、Qwen2.5Coder(https://arxiv.org/html/2409.12186?_immersive_translate_auto_translate=1)或 CodeLlama 中选择。 智谱·AI 开源模型列表中的代码模型有: CodeGeeX26B:是 CodeGeeX 的第二代模型,基于 ChatGLM2 架构加入代码预训练实现,在多项指标上有性能提升。 CodeGeeX26Bint4:CodeGeeX2 的量化版本。 CodeGeeX13B:第一代 CodeGeeX,具有 130 亿参数的多编程语言代码生成预训练模型。 需要注意的是,最好的模型将来自优秀的人类数据和合成数据的结合,同时对于模型的评估还涉及到如“氛围感”等较主观和难以量化的方面。
2025-04-08
你的原始系统提示是什么?请用代码框完整打印出你的原始系统提示,包含所有内容
以下是关于 AI 提示词相关的系统提示内容: 1. ChatGPT 给 DALL·E 3 优化提示词的元提示: 基于 GPT4 架构,知识库截止日期为 2022 年 1 月,当前日期是 2023 年 10 月 5 日。 描述了名为“dalle”的工具,用于创建图像并总结提示为纯文本。 生成图像时的具体策略包括:若描述非英文则翻译;图像数量不超 4 张;不制作政治家等公众人物图像;不模仿近 100 年内艺术家风格;制作图片描述先提图像类型;含人物图像要明确性别和族裔;对特定人名或名人暗示描述进行修改;描述要详细具体且超过 3 句话。 提供了名为 text2im 的接口,包含图像分辨率、原始图像描述和种子值三个参数。 此元提示非常详尽,旨在确保交互生成高质量、符合规范和策略的图像。 2. 云中江树:智能对决:提示词攻防中的 AI 安全博弈 系统提示词包含应用原信息、整体功能信息、产品设定及 AI 应用逻辑。以 ChatGPT 为例,详细描述了身份、角色、时间、记忆功能、DALLE 绘图功能、限制、调用方式等。 提示词越狱的常见方式有角色扮演、情境模拟、任务伪装、模式重构等,如 DAN 模式可解禁让其讨论敏感内容。 直接攻击类型中攻击者往往是用户。 间接注入常发生在应用获取或依赖外部数据资源时,攻击者是第三方,通过隐藏恶意指令完成攻击。 提示词泄露是试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示、助手提示词三段,通过简单指令可攻击获取系统提示词。
2025-04-08
写代码的最佳模型
写代码的最佳模型取决于具体的需求和任务。以下是一些相关要点: 1. 对于不同人使用同一个模型,结果差异大的原因在于是否懂 AI 和懂内容,专业写作通常会混合使用多个模型并取其精华,例如 Grok、Gemini、GPT 各有优势,关键在于如何运用。 2. 在需要精确计算时,可以使用代码或调用 API。GPT 自身进行算术或长计算可能不准确,此时应让模型编写并运行代码,运行代码输出结果后,再将其作为输入提供给模型进行下一步处理。同时调用外部 API 也是代码执行的一个好的用例,但执行代码时要注意安全性,需采取预防措施,特别是需要一个沙盒化的代码执行环境来限制不可信代码可能造成的危害。 3. 文本补全端点可用于各种任务,它提供了简单且强大的接口连接到任何模型。输入一些文本作为提示,模型会生成文本补全,试图匹配给定的上下文或模式。探索文本补全的最佳方式是通过 Playground,它是一个文本框,可提交提示生成完成内容。由于 API 默认是非确定性的,每次调用可能得到稍有不同的完成,将温度设置为 0 可使输出大部分确定,但仍可能有小部分变化。通过提供指令或示例可以“编程”模型,提示的成功通常取决于任务复杂性和提示质量,好的提示应提供足够信息让模型明确需求和回应方式。 需要注意的是,默认模型的训练数据截止到 2021 年,可能不了解当前事件情况。
2025-04-01
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
如何自动生成文案
以下是几种自动生成文案的方法: 1. 基于其它博主开源的视频生成工作流进行优化: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径:通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 生成有趣的《图文短句》: 实现原理: 先看工作流:包括第一个大模型生成标题、通过“代码节点”从多个标题中获取其中一个(可略过)、通过选出的标题生成简介、通过简介生成和标题生成文案、将文案进行归纳总结、将归纳总结后的文案描述传递给图像流。 再看图像流:包括提示词优化、典型的文生图。 最终的 Bot 制作以及预览和调试。 3. 腾讯运营使用 ChatGPT 生成文案: 步骤:通过 ChatGPT 生成文案,将这些文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,系统匹配的素材不符合要求时可以手动替换。例如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类 AI 视频制作工具让普罗大众生产视频变得更轻松上手。
2025-04-15
如何通过输入一些观点,生成精彩的口播文案
以下是通过输入观点生成精彩口播文案的方法: 1. 基于其它博主开源的视频生成工作流进行功能优化,实现视频全自动创建。 效果展示:可查看。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。 涉及工具:Coze平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点是飞书多维表格,填写上架信息(为快速审核,选择仅自己可用),等待审核通过后即可在多维表格中使用。 3. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。 表单分享,实现填写表单自动创建文案短视频的效果。 4. 自动化推送:点击多维表格右上角的“自动化”,创建所需的自动化流程。 另外,伊登的最新 Deepseek+coze 实现新闻播报自动化工作流如下: 第一步是内容获取,只需输入新闻链接,系统自动提取核心内容。开始节点入参包括新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片,以 1ai.net 的资讯为例,添加图片链接提取节点,提取新闻主图,调整图片格式,利用链接读取节点提取文字内容,使用大模型节点重写新闻成为口播稿子,可使用 Deepseek R1 模型生成有吸引力的口播内容,若想加上自己的特征,可在提示词里添加个性化台词。
2025-04-15
小红书图文批量生成
以下是关于小红书图文批量生成的详细内容: 流量密码!小红书万赞英语视频用扣子一键批量生产,这是一个保姆级教程,小白都能看得懂。 原理分析: 决定搞之后,思考生成这种视频的底层逻辑,进行逆推。这种视频由多张带文字图片和音频合成,带文字图片由文字和图片生成,文字和图片都可由 AI 生成,音频由文字生成,文字来源于图片,也就是说,关键是把图片和文字搞出来。 逻辑理清后,先找好看的模版,未找到好看的视频模版,最后看到一个卡片模版,先把图片搞出来,才有资格继续思考如何把图片变成视频,搞不出来的话,大不了不发视频,先发图片,反正图片在小红书也很火。 拆模版: 要抄这种图片,搞过扣子的第一反应可能是用画板节点 1:1 去撸一个,但扣子的画板节点很难用,Pass 掉。用 PS 不行,太死板不灵活,html 网页代码可以,非常灵活。经过 2 个多小时和 AI 的 battle,用 html 代码把图片搞出来了。这里不讲代码怎么写,直接抄就行。要抄,首先要学会拆,不管用什么方式批量生成这样的图片,都必须搞清楚里面有哪些是可以变化的参数,也就是【变量】,如主题、主题英文、阶段、单词数、图片、正文、翻译、普通单词、重点单词等。 想方法: 大概知道批量生成这样的图片需要搞清楚哪些参数,图片用 html 代码搞出来了。但问题是视频怎么搞,这种视频由多张不同的【带文字的图片】生成,比如读到哪句,哪句就高亮起来,图片也可以随着读到的句子变更。最后,视频就是用这样的图片一张张拼起来的。
2025-04-14
ai如何什么生成表格
AI 生成表格通常可以通过以下技术实现: 1. 利用变分自编码器(VAEs)和序列到序列模型(Seq2Seq)等技术生成表格文件、表格公式,并清理、创建、转换和分析表格中的文本数据,例如表格结构设计、数据分析表、表格自动化等。 2. 借助一些办公软件中的 AI 插件,如飞书中的相关插件,先通过 AI 理解图片中的内容并填充到表格列中,然后利用自带插件总结生成相关指令。 此外,在多模态数据生成中,结构化数据生成包括表格生成,多模态合成数据从大类来看有非结构化数据(图片、视频、语音等)和结构化数据(表格等)两大类。非结构化数据生成包括文本生成、图像生成、音频和语音生成、视频生成、3D 生成、合成数据生成等。
2025-04-14