Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型的逻辑

Answer

大模型是指输入大量语料,拥有庞大参数数量,通过处理和理解海量数据从而获得类似人类“思考”能力的模型。

通俗来讲,它能够理解自然语言,进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”这件事来类比大模型的训练和使用过程:

  1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。
  2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。
  3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。
  4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。
  5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。

大模型之所以强大,一方面在于其庞大的参数数量,这些参数在学习过程中不断调整,帮助模型更深入地理解和生成数据;另一方面,大模型的训练离不开大量数据,无论是文本、图像还是音频数据,都是其学习的基础,通过对这些数据的学习,模型能够掌握丰富的知识和技能。

从本质上看,Prompt 大模型是一个基于语言的概率模型,它返回其认为概率最大的内容。如果直接问大模型而不提供 Prompt,相当于大模型随机给出答案。有了 Prompt,就相当于给了一个模板,包括对模型的要求、输入和输出的限制,大模型在这个限制下得到概率最大的答案。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)

十七问解读生成式人工智能

所谓的大模型,简而言之,就是那些拥有庞大参数数量的模型。它们通过处理和理解海量数据,能够胜任一系列复杂的任务。那么,为何将这些模型称作“大”模型呢?原因在于它们的规模之大,通常包含从数十亿到数千亿的参数。这些庞大的参数集合赋予了模型强大的学习和记忆能力,使其在处理各种任务时表现出色。我们可以从两个方面来进一步解读大模型的特点:大模型之所以强大,一个重要原因在于它们庞大的参数数量。这些参数,或者说“权重”,是模型在学习过程中不断调整的核心,它们帮助模型更深入地理解和生成数据。大模型的训练离不开大量的数据。无论是文本、图像还是音频数据,都是大模型学习的基础。通过对这些数据的深入学习,模型能够掌握丰富的知识和技能。

从原理到应用一次讲清楚 Prompt

[title]从原理到应用一次讲清楚 Prompt[heading1] 2、用更加专业的方式定义 [content]Prompt大模型的本质是一个基于语言的概率模型,他返回他觉得概率最大的内容。如果是直接问大模型,没有提供Prompt,相当于大模型随机给出他的答案。有了Prompt,其实是给了一个模板,这个模板包括了对于模型的要求,输入和输出的限制,大模型在这个限制之下,去得到概率最大的答案。

Others are asking
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
中国AI投资逻辑
中国 AI 投资存在以下逻辑: 1. 大规模算力投资:会使公司转变为重资产模式,在瞬息万变的科技市场中可能对公司估值产生不利影响,进而影响投资人收益。获取和使用高性能算力成本高昂,是重大决策。 2. 投资圈现象:许多投资人给大模型创业者看似矛盾的策略,如招募名校人才、组织产品发布会、推出产品、进行下一轮融资,但避免购买算力。多数创业公司选择规避算力风险抬高估值,这可能成为突破的绊脚石,类似荷兰郁金香泡沫,当风口过去,真实收入将成关键。 3. 行业趋势:2024 年,AI 仍是最强吸金赛道。国内 AI 行业融资总金额增加但事件数下降,马太效应明显,资本更青睐热点和高成熟度赛道。智能驾驶在细分赛道中表现突出,AI+教育、游戏、医疗等赛道投资总额增长。政策方面,政府积极推进,国家队频繁出手投资。 4. 发展历程:OpenAI 坚持大模型方向成功,前瞻性投资算力为其奠定基础,其成功是战略眼光和长期投入的结果,背后是惊人的资源调动。中国企业工程优化能力强,人们对国内大模型快速应用充满期待。
2025-03-27
教我工作流的底层逻辑跟如何入门学习工作流
工作流的底层逻辑及入门学习方法如下: 工作流通常由多个节点构成,节点是其基本单元,本质上是包含输入和输出的函数。常见的节点类型包括: 1. LLM(大语言模型):使用输入参数和提示词生成处理结果。 2. Code(代码):通过 IDE 编写代码处理输入参数,并返回输出值。 3. Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。 4. Condition(条件判断):ifelse 逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支。 5. Variable(获取变量):从 Bot 中获取变量作为参数在工作流中使用。 6. Database(数据库):在工作流中使用提前配置在 Bot 数据库中的数据。 以下是一些入门学习工作流的示例和资源: 1. 对于生成绿幕素材和绿幕素材抠图的工作流,您可以下载工作流文件拖入 ComfyUI 中自动加载,然后对照相关说明进行学习。工作流链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 对于 Glif 图像流制作冰淇淋甜品地标,您可以按照以下步骤学习: 1 分钟交作业:点击网址 https://glif.app/@jianStuart/glifs/cly85fy2i000cqe87zcu72i5l ,选一张主体区分度高且主体为地标的图,上传图片并点击相应按钮,多点几次选一张满意的即可。 5 分钟学习制作:点击顶上的“build”按钮,点击“+”加号,选择“img input”,再点下面的“+”加号,选“image generator”,把提示词放进节点,打开“advanced controls”,修改参数,勾选“Enable input image”并改参数。 3. 对于 Coze 平台的工作流,官方有现成的教程参考: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本还提供了一些示例,建议跟着实操一遍,如: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent
2025-03-24
我想写一部都市玄幻小说,已经有了简单的大纲。请问使用哪款AI工具?又没有 AI味。快速的写出真人作者的小说意境。并且上下逻辑清晰30万的长篇小说。列出免费工具。
以下为您推荐两款可用于写都市玄幻小说的免费 AI 工具及相关方法: 1. Coze: 工作流核心节点: 用 Bing 搜索标题相关的内容。 用程序将搜索结果结构化(不熟悉程序的可忽略或直接复制文中的代码)。 用大模型草拟大纲,包括标题、主旨、世界观、主要角色、小说背景、情节概要。 再用大模型来写文章。 输出文章内容。 2. 与 AI 交互写作(如南瓜博士的经验): 确定主题:不写科幻,用非常规视角,如以猫为第一人称写爱情小说。与 AI 讨论主题,挑选 AI 提供的调味料,明确主题。 构思情节:先刻画人物,如喜欢书店店员艾拉这个人物,使其更丰满,再设计故事线。 希望这些工具和方法能对您创作小说有所帮助。
2025-03-19
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
不能用APP思维、传统数字平台思维去做大模型创业和人工智能创业,二者在底层逻辑和商业模式等方面完全不同
大模型创业和人工智能创业与 APP 思维、传统数字平台思维在底层逻辑和商业模式等方面存在显著差异。大模型和人工智能创业更注重数据的深度处理、算法的优化创新以及对复杂问题的解决能力。相比之下,APP 思维通常侧重于用户界面和功能的设计,以满足特定的用户需求;传统数字平台思维则更多关注平台的搭建和用户流量的获取与运营。在大模型和人工智能领域,技术的突破和创新是关键,需要投入大量资源进行研发,并且要面对更高的技术门槛和不确定性。而 APP 和传统数字平台的创业相对更侧重于市场推广和用户体验的优化。总之,不能简单地用 APP 思维和传统数字平台思维来指导大模型和人工智能创业。
2025-03-07
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14