Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

中国AI投资逻辑

Answer

中国 AI 投资存在以下逻辑:

  1. 大规模算力投资:会使公司转变为重资产模式,在瞬息万变的科技市场中可能对公司估值产生不利影响,进而影响投资人收益。获取和使用高性能算力成本高昂,是重大决策。
  2. 投资圈现象:许多投资人给大模型创业者看似矛盾的策略,如招募名校人才、组织产品发布会、推出产品、进行下一轮融资,但避免购买算力。多数创业公司选择规避算力风险抬高估值,这可能成为突破的绊脚石,类似荷兰郁金香泡沫,当风口过去,真实收入将成关键。
  3. 行业趋势:2024 年,AI 仍是最强吸金赛道。国内 AI 行业融资总金额增加但事件数下降,马太效应明显,资本更青睐热点和高成熟度赛道。智能驾驶在细分赛道中表现突出,AI+教育、游戏、医疗等赛道投资总额增长。政策方面,政府积极推进,国家队频繁出手投资。
  4. 发展历程:OpenAI 坚持大模型方向成功,前瞻性投资算力为其奠定基础,其成功是战略眼光和长期投入的结果,背后是惊人的资源调动。中国企业工程优化能力强,人们对国内大模型快速应用充满期待。
Content generated by AI large model, please carefully verify (powered by aily)

References

中国大模型面临的真实问题:登顶路远,坠落一瞬

大规模算力投资带来的重大问题是:它会使公司转变为重资产模式。这种转变就像是一艘灵活的帆船突然变成了一艘庞大的油轮,虽然力量增强,但失去了灵活性。在当今瞬息万变的科技市场中,这种转变可能会对公司的估值产生不利影响,进而直接影响投资人的收益。尽管美国政府实施了“卡脖子”策略,但对中国公司而言,获得英伟达的算力并非完全不可能。光我自己听说的渠道就多达好几种。然而,无论选择哪种方式,获得高端GPU都是一项巨大的投资。除了GPU本身的高昂价格外,后续的部署、运营、调试和使用都将产生可观的成本。这么看,高性能算力的获取和使用,无疑是一项需要深思熟虑的重大决策。有意思的是,这两年中国的AI投资圈出现了一种有趣的现象。许多投资人会直接告诉大模型的创业者一个看似矛盾的策略:1.招募名校背景的人才2.迅速组织产品发布会3.推出大模型产品4.进行下一轮融资5.避免购买算力其实从上面的做法中就不难看出,在很多创业公司、创始人面前都摆着一个两难的选择:是否应该承担高昂的算力投入风险?还是应该包装自己,不断推高自己的估值?在现实情况中,大多数创业公司都选择了规避算力风险,抬高估值。但这个看似明智的决定却可能成为他们在大模型领域突破的绊脚石。因为这种做法让人想起了17世纪的荷兰郁金香泡沫。当时,人们疯狂投资郁金香球茎,推高价格,希望在泡沫破裂前获利。在AI领域,我们似乎正在经历一场类似的"估值泡沫"。然而,正如每个泡沫最终都会破裂,AI的风口期也不会永远持续。当风口过去,公司面临继续融资或上市的需求时,真实的收入将成为关键指标。在这种背景下,我们经常听到业内人士抱怨被"卡了脖子"。但这里出现了一个发人深省的问题:究竟是被他人卡住了脖子,还是我们自己不愿意"买条新领带"?

《2024年度AI十大趋势报告》发布:技术创新、产品洗牌、行业动态一文看尽

回顾2024年,放眼世界,AI仍旧是最强吸金赛道。据统计,国内AI行业融资总金额增加,但事件数同比下降,反应了机构更加谨慎的理性态度;同时马太效应越发明显,资本更青睐热点赛道和高成熟度赛道。在各细分赛道中,智能驾驶独占鳌头,投资事件数量和金额总数远超其他赛道,且多家企业的成功IPO为市场注入了巨大信心与活力。AI+教育、AI+游戏、AI+医疗等赛道也迎来了投资总额的增长,调研统计结果显示,机构对技术难度更高、壁垒更强、更晚达到TPF(Technology-Product Fit)的赛道展现出更强兴趣。在政策方面,由于政府对AI技术本身及其在各行业落地的长期关注,尤其积极推进AI原生行业发展,北京、上海、武汉等城市已经出台一系列政策,吸引AI相关的人才聚集与企业落地。同时,国家队的频繁出手投资体现出政策的鼓励与支持。2024年度AI十大趋势报告2023十大前沿科技趋势报告|多行文本|标签|备注|附件||-|-|-|-||2022十大前沿科技趋势报告|年度趋势||||2021十大前沿科技趋势报告|年度趋势|||

中国大模型面临的真实问题:登顶路远,坠落一瞬

人工智能在2023年掀起了惊涛骇浪。OpenAI推出ChatGPT后,中国科技界迅速做出反应。短短几个月内,中国公司如雨后春笋般推出了自己的大语言模型。到2023年底,这个数字已经突破130个,展现了中国在AI领域的雄心和实力。然而,回溯ChatGPT问世之前的科技格局,我们会发现一个有趣的现象:产业界和投资界对OpenAI的前景普遍持怀疑态度。这种普遍的质疑声并未动摇OpenAI的决心。他们坚持自己的方向,最终用实际成果证明了自己的远见。过去,大模型研发的低迷常被归因于结果的不确定性。然而,ChatGPT的横空出世彻底改变了这一局面。如今,大模型的潜力已经得到了充分证实,各大公司纷纷加大在算力、数据和人才方面的投入。中国企业向来以工程优化见长。这种优势让许多人对国内大模型的快速应用充满期待。他们认为,能够实际落地的大模型产品指日可待。但现实是否如此简单?回顾OpenAI的发展历程,我们会发现一个关键因素:坚定的方向。对OpenAI而言,大模型从未是一个摇摆不定的选项,而是一条笔直的道路。他们将大部分资金投入到算力上,尤其是在英伟达A100芯片价格相对较低的时期。这种前瞻性的投资策略,为他们后来的成功奠定了基础。这种做法让人想起了亚马逊创始人杰夫・贝索斯的一句名言:"发明需要长期思维。"OpenAI的成功不仅仅是技术的突破,更是战略眼光和长期投入的结果。OpenAI的成功背后,是一场惊人的资源调动。根据第三方数据机构Sami Analysis的估算,OpenAI的硬件配置令人瞠目结舌:约3,617台HGX 100服务器,搭载近3万块英伟达GPU。这个数字足以让任何科技爱好者心跳加速。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
教我工作流的底层逻辑跟如何入门学习工作流
工作流的底层逻辑及入门学习方法如下: 工作流通常由多个节点构成,节点是其基本单元,本质上是包含输入和输出的函数。常见的节点类型包括: 1. LLM(大语言模型):使用输入参数和提示词生成处理结果。 2. Code(代码):通过 IDE 编写代码处理输入参数,并返回输出值。 3. Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。 4. Condition(条件判断):ifelse 逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支。 5. Variable(获取变量):从 Bot 中获取变量作为参数在工作流中使用。 6. Database(数据库):在工作流中使用提前配置在 Bot 数据库中的数据。 以下是一些入门学习工作流的示例和资源: 1. 对于生成绿幕素材和绿幕素材抠图的工作流,您可以下载工作流文件拖入 ComfyUI 中自动加载,然后对照相关说明进行学习。工作流链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 对于 Glif 图像流制作冰淇淋甜品地标,您可以按照以下步骤学习: 1 分钟交作业:点击网址 https://glif.app/@jianStuart/glifs/cly85fy2i000cqe87zcu72i5l ,选一张主体区分度高且主体为地标的图,上传图片并点击相应按钮,多点几次选一张满意的即可。 5 分钟学习制作:点击顶上的“build”按钮,点击“+”加号,选择“img input”,再点下面的“+”加号,选“image generator”,把提示词放进节点,打开“advanced controls”,修改参数,勾选“Enable input image”并改参数。 3. 对于 Coze 平台的工作流,官方有现成的教程参考: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本还提供了一些示例,建议跟着实操一遍,如: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent
2025-03-24
我想写一部都市玄幻小说,已经有了简单的大纲。请问使用哪款AI工具?又没有 AI味。快速的写出真人作者的小说意境。并且上下逻辑清晰30万的长篇小说。列出免费工具。
以下为您推荐两款可用于写都市玄幻小说的免费 AI 工具及相关方法: 1. Coze: 工作流核心节点: 用 Bing 搜索标题相关的内容。 用程序将搜索结果结构化(不熟悉程序的可忽略或直接复制文中的代码)。 用大模型草拟大纲,包括标题、主旨、世界观、主要角色、小说背景、情节概要。 再用大模型来写文章。 输出文章内容。 2. 与 AI 交互写作(如南瓜博士的经验): 确定主题:不写科幻,用非常规视角,如以猫为第一人称写爱情小说。与 AI 讨论主题,挑选 AI 提供的调味料,明确主题。 构思情节:先刻画人物,如喜欢书店店员艾拉这个人物,使其更丰满,再设计故事线。 希望这些工具和方法能对您创作小说有所帮助。
2025-03-19
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
不能用APP思维、传统数字平台思维去做大模型创业和人工智能创业,二者在底层逻辑和商业模式等方面完全不同
大模型创业和人工智能创业与 APP 思维、传统数字平台思维在底层逻辑和商业模式等方面存在显著差异。大模型和人工智能创业更注重数据的深度处理、算法的优化创新以及对复杂问题的解决能力。相比之下,APP 思维通常侧重于用户界面和功能的设计,以满足特定的用户需求;传统数字平台思维则更多关注平台的搭建和用户流量的获取与运营。在大模型和人工智能领域,技术的突破和创新是关键,需要投入大量资源进行研发,并且要面对更高的技术门槛和不确定性。而 APP 和传统数字平台的创业相对更侧重于市场推广和用户体验的优化。总之,不能简单地用 APP 思维和传统数字平台思维来指导大模型和人工智能创业。
2025-03-07
AGI底层逻辑
AGI(通用人工智能)的底层逻辑包含以下方面: 在公众传播层面,相关名词常被混用,但底层是 Transformer 结构。Transformer 底层是 function loss 损失函数,是一个大参数(千亿级别)的回归方程。其通过回归方程的 Function loss 拟合 A 到 B 的 mapping 关系,实现数据集的压缩与还原。在一定 prompt condition 情况下,Transformer 能 repeat 曾经出现过的数据内容,从而实现“生成”能力。大语言模型在两个数据集压缩后,能解释两个数据集之间地带的“连续”能力。部分人觉得 LLM(大语言模型)具有 AGI 潜力,但 LeCun 反对。同时,大语言模型与 Alpha Go 存在差异,Alpha Go 是一个增强学习模型,学习结果会调整模型自身参数,具有推理能力,而大语言模型在这块很弱。Transformer 决定 LLM 是一个生成式模型。
2025-03-07
阿里集团投资了哪几个大模型公司
阿里投资的大模型公司主要有月之暗面和 MiniMax 。 去年底,阿里开始密切接触当时大模型公司中排位相对靠后的月之暗面,并在 2024 年春节前谈定投资,大手笔投资近 8 亿美元,持股比例约 40%,月之暗面投后估值来到 23.4 亿美元。 此外,阿里在今年初投资了 MiniMax 约 6 亿美元。
2025-03-28
如何制作一个股票投资的agent
要制作一个股票投资的 Agent,您可以参考以下步骤: 1. 登录相关控制台,例如扣子控制台(coze.cn),使用手机号或抖音进行注册/登录。 2. 在我的空间创建 Agent,在扣子主页左上角点击“创建 Bot”,选择空间名称为“个人空间”、Bot 名称为“股票投资 Agent”(名称可自定义),并点击“确认”完成配置。 3. 编写 Prompt,即描述您想要创建的股票投资 Agent 的功能说明,开始时可以使用简短的词语作为 Prompt 提示词。 4. 优化 Prompt,点击“优化”进行相应操作。 5. 设置开场白。 此外,您还可以参考以下案例获取更多灵感: 在网上和别人聊天时,让 Cursor 的 Agent 模式为您生成所需的股票走势对比图。 在处理图片时,直接向 Cursor 的 agent mode 描述您想要的图片处理效果。 在进阶过程中,您可以: 查看其他 Bot 以获取灵感。 找到与股票投资相关且符合自己兴趣、工作方向的 Bot 进行深入沟通。 了解基础组件,寻找不错的案例进行借鉴和复制。 加入相关的共学小组,尝试在群里提问交流。 在 WaytoAGI 中,您还能获得文档资源、交流群和活动等方面的支持。
2025-02-23
ai投资
以下是关于 AI 投资的相关信息: 7 月 14 日,Web3 和人工智能初创公司 AGII 获得 1500 万美元融资。这笔投资证明了 AGII 在转变内容生成并为用户提供强大的 AI 驱动工具方面具有巨大潜力。AGII 是一个 AI 驱动的平台,赋予用户轻松生成各个领域高质量内容的能力,提供一系列 AI 生成器和魔法工具,包括文本、图像、代码、聊天机器人、语音转文本和配音等功能。 1 月 31 日,某公司投资方包括 a16z、ICONIQ Growth、NEA 等,公司估值达 33 亿美元,较去年增长 3 倍,总融资金额达 2.81 亿美元,推动 AI 语音交互发展。其 CEO 表示目标是让人与 AI 的对话像真人交流一样自然。 1 月 31 日,Mistral AI 发布 Mistral Small 3,仅 24B 参数,但性能媲美 70B 级别模型,适合本地部署。对比 Llama 3.3 70B 或 Qwen 32B,是 GPT4omini 等专有模型的优秀开源替代品,MMLU 基准测试 81%,生成速度可达 150 tokens/s,运行效率极高。 1 月 31 日,Gemini 2.0 Flash 正式上线。
2025-02-20
量化投资工具
以下是为您提供的关于量化投资工具的相关信息: 幻方时代: 算力军备竞赛: 2019 年,萤火一号,投入规模 2 亿元,GPU 数量 1100,算力水平相当于 4 万台 PC 算力。 2021 年,萤火二号,投入规模 10 亿元,GPU 数量 10000+,算力是萤火一号的 18 倍。 量化投资的范式革命: 技术特征包括全流程 AI 决策系统、实时处理 PB 级市场数据、自适应动态风控模型。 DeepSeek: 颠覆性技术架构:相关内容可通过获取。 震撼业界的里程碑: 2024.05,DeepSeek V2 引发行业价格战,一周后全部模型集体降价。 2024.12,DeepSeek V3 685B 超越 Llama3.2,训练成本 600 万美元(Meta 同级别 1/9),性能指标为 MTBench 8.7,MMLU 83.5。 AIGC Weekly53 中的量化投资工具: Composer Trading 平台: 是一个旨在改变个人创建和管理投资策略方式的平台。 提供由人工智能驱动的策略创建工具,用户可用自然语言解释目标、策略和风险关注点,AI 辅助创建策略。 自动化处理交易策略的执行和再平衡。 提供各种类别的预构建策略选择,如长期、技术重点和多样化等。 作为经纪商,提供全自动交易执行,无佣金模式,通过简单固定月度订阅透明定价,用户可免费测试。 具有定制特性,每个策略完全可编辑,用户可用无代码视觉编辑器修改策略、调整参数等。 支持回测,帮助用户学习并调整战略,可与基准或其他战略比较,计算费用、滑点以及战术最终价值,提供潜在结果全面视图。
2025-02-19
微软的AI方面的投资
微软在 AI 方面进行了大量投资。 首先,微软巨额投资了 OpenAI,但 GPT4 并非微软完全自有。微软未将大部分投资的算力直接给 OpenAI 使用,且不久前完成了对 Inflection AI 的收购,准备利用其专业团队和数据集,加上自身合成数据,从头训练一个约五千亿参数规模的 MOE 模型 MAI1。 其次,微软最初向 OpenAI 出资 10 亿美元,以服务器上的计算时间作为回报,随着双方信心增强,交易规模不断扩大,目前微软已向 OpenAI 投入 130 亿美元。 此外,在 2019 年,微软投资 10 亿美元给 OpenAI 成为其最大的机构股东。
2025-01-25
我需要专门进行金融投资项目研究,除了定性研究还很关注数据研究,我需要这样的智能体,哪一个智能体平台比较适合?
以下是一些可能适合您进行金融投资项目研究的智能体平台: 1. 蚂蚁的智能体。 2. Coze 的智能体。 3. 扣子平台:例如生物医药小助手就是基于扣子平台创建的,能为用户提供清晰的一步式回答。 4. Cursor 平台:可用于设计如卡密系统等商业化模式。 不过需要注意的是,不同的智能体平台可能具有不同的特点和适用场景,您需要根据自己的具体需求和使用习惯进行选择。
2024-12-26
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
目前中国市面上什么好用的AI工具
以下是中国市面上一些好用的 AI 工具: 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ 。写作猫是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ 。是得力的智能写作助手,支持多种文体写作,能一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ 。智能创作助手,探索提升写作者效率和创作体验。 更多 AI 写作类工具可查看:https://www.waytoagi.com/sites/category/2 。 图生图产品: Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感。 Retrato:将图片转换为非凡肖像,有 500 多种风格选择。 Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:将上传照片转换为芭比风格。 图像类产品: 可灵:由快手团队开发,用于生成高质量图像和视频,图像质量高,但价格相对较高,有不同收费档次。 通义万相:在中文理解和处理方面出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,目前免费,每天签到获取灵感值即可,但存在一些局限性,如某些类型图像无法生成,处理非中文或国际化内容可能不够出色,处理多元文化内容可能存在偏差。
2025-03-26
在哪里能查到中国ai相关行业公司统计
以下是一些可以查询中国 AI 相关行业公司统计的网站: 1. ,其中包含中国 AI 公司在注意力、覆盖力等方面的统计。 2. ,涵盖中国 AI 公司、产品在注意力、覆盖力等方面的统计。 3. ,有中国 AI 公司在注意力、覆盖力等方面的统计。
2025-03-26
请介绍一下中国AI发展历史
中国 AI 的发展历史可以追溯到二十世纪中叶。 最初,AI 领域的符号推理较为流行,也取得了一些重要进展,如专家系统。但由于从专家提取知识并以计算机可读形式表现和保持知识库准确性的任务复杂且成本高,20 世纪 70 年代出现了“人工智能寒冬”。 对于大众来说,对 AI 领域的使用在近 20 年随着国内互联网的发展才开始普及。最初的应用主要是基于 NLP 技术的聊天机器人和客服机器人。随后,中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中的应用广泛,如语音助手、智能翻译设备、人脸识别支付系统等。但此前这些技术突破大多限于特定领域,模型应用范围相对狭窄。 近年来,随着计算资源变得更便宜、可用数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。在过去十年中,“人工智能”一词常被用作“神经网络”的同义词。 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT ,引发全球 AI 浪潮。AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续神经网络奠定基础。1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出并确立为一门学科。此后近 70 年,AI 的发展起起落落。
2025-03-18
我想知道现在中国网络环境内可以用的最好图片AI,以图生图稳定
目前在中国网络环境内可用的较好的以图生图且较为稳定的 AI 产品有: 1. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,可将图片转换为非凡肖像,有 500 多种风格可选,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果出色。 此外,关于 Stable Diffusion 还有一些相关的使用技巧和处理步骤: 用 GFPGAN 算法将人脸变清晰,可参考文章。 将图片发送到图生图中,打开 stableSR 脚本放大两倍,该放大插件是所有插件中对原图还原最精准、重绘效果最好的,可参考文章。 使用 Stable Diffusion 中的【X/Y/Z plot】脚本做参数对比,如设置 X 轴为提示词相关性,Y 轴为重绘幅度等。绘图时可通过增加提示词、使用画笔工具等进行局部修改和重绘。
2025-03-12
根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求
以下是为您提供的关于“基于机器学习的中国股市波动率预测与美股市场对比分析”的论文框架: 一、引言 1. 研究背景和意义 阐述机器学习在金融领域的应用现状 强调股市波动率预测的重要性 说明中、美股市对比的价值 2. 研究目的和问题 明确预测股市波动率的具体目标 提出中、美股市对比的关键问题 3. 研究方法和数据来源 介绍所采用的机器学习算法 说明中国股市和美股市场的数据获取途径 二、相关理论与文献综述 1. 机器学习在股市预测中的应用 列举常见的机器学习模型及其在股市预测中的效果 分析其优缺点 2. 股市波动率的理论和测量方法 解释波动率的概念和计算方法 介绍常用的波动率模型 3. 中、美股市的特点和差异 对比两国股市的交易制度、投资者结构等方面 总结已有研究中关于中、美股市波动率的差异 三、数据预处理与特征工程 1. 数据收集与清洗 详细描述中国股市和美股市场的数据收集范围和时间跨度 处理缺失值、异常值等数据问题 2. 特征选择与构建 确定影响股市波动率的关键特征 构建新的特征变量 3. 数据标准化与归一化 说明对数据进行标准化和归一化的方法和目的 四、模型构建与训练 1. 选择合适的机器学习模型 比较不同模型(如随机森林、支持向量机、神经网络等)的适用性 确定最终选用的模型 2. 模型训练与优化 描述训练过程中的参数调整和优化方法 展示模型的性能评估指标 3. 模型验证与比较 使用交叉验证等方法验证模型的准确性 对比不同模型的预测效果 五、中国股市波动率预测结果与分析 1. 预测结果展示 以图表形式呈现中国股市波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析预测结果的准确性和可靠性 探讨影响预测效果的因素 3. 敏感性分析 研究模型参数和输入特征对预测结果的敏感性 六、美股市场波动率预测结果与分析 1. 预测结果展示 以图表形式呈现美股市场波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析美股市场预测结果的特点和差异 对比中、美股市预测结果的异同 3. 影响因素分析 探讨美股市场特有的影响波动率的因素 七、中、美股市波动率对比分析 1. 波动率特征对比 比较中、美股市波动率的均值、方差、峰度等统计特征 分析波动率的周期性和趋势性 2. 影响因素对比 对比两国股市中影响波动率的宏观经济因素、政策因素等 讨论投资者行为对波动率的影响差异 3. 风险评估与管理对比 评估中、美股市的风险水平 对比风险管理制度和策略 八、结论与展望 1. 研究结论总结 概括中、美股市波动率预测的主要成果 总结对比分析的关键发现 2. 研究的局限性 指出研究过程中存在的不足之处 3. 未来研究方向 提出进一步改进模型和拓展研究的方向 对中、美股市波动率研究的展望 数据图表要求: 1. 中、美股市历史波动率的折线图 2. 不同机器学习模型预测效果的对比柱状图 3. 中、美股市波动率特征的统计表格 4. 影响中、美股市波动率的因素的相关性矩阵图 5. 中、美股市风险评估的雷达图
2025-03-11