Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Cow好像接不上coze 的数据库,在coze 上能正常使用,到cow上就无法获取信息

Answer

以下是关于 Cow 接不上 coze 数据库的可能解决方法:

  1. 服务器设置方面:
    • 点击“Docker”中的“编排模板”中的“添加”按钮。
    • 备注说明版和无备注干净版的操作有所不同。
    • 将编译好的内容复制进来。
    • 在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”。提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。
  2. 直接调用大模型方面:
    • 当在 COW 中直接调用千问的某一个大模型时,只需要更改 key 和 model 即可。以调用“qwen-max”模型为例,在/root/chatgpt-on-wechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。获取 key 的方式有视频教程和图文教程。注意需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明没有实名认证,可点击去实名认证,或查看自己是否已认证。
  3. 安装并接入 cow 方面:
    • 回到宝塔,打开【终端】。
    • 依次粘贴并回车:cd /root ;git clone https://github.com/zhayujie/chatgpt-on-wechat 。出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次。
    • 继续依次输入:cd chatgpt-on-wechat/ ;pip install -r requirements.txt ;pip install -r requirements-optional.txt 。
    • 到“文件”菜单中执行,点击文件-找到 root,进入 root 文件夹,找到 chatgpt-on-wechat 文件夹,并进入。
    • 点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)。
    • 粘贴并回车:cp config-template.json config.json ,刷新页面。在当前目录下,找到 config.json 文件。删除文件里的所有代码,复制提供的代码粘贴到文件里。
Content generated by AI large model, please carefully verify (powered by aily)

References

【智能体】让Coze智能体机器人连上微信和微信群详细配置文档

chatgpt-on-wechat(简称CoW)项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择GPT3.5/GPT4.0/GPT4o/Claude/Gemini/ChatGLM/月之暗面/文心一言/讯飞星火/通义千问/LinkAI,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业AI应用。点击“Docker”中的“编排模板”中的“添加”按钮备注说明版此处借用“程序员安仔”封装的代码,以资感谢~无备注干净版将上面编译好的内容复制进来在“容器编排”中“添加容器编排”选择在“编排模板”里创建的“coze2openai”提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。说人话总结:现在只是个伏地魔,没有载体,需要找个微信号附着一下。

「第一天」COW项目:千问模型、百炼应用接入教程

百炼首页:https://bailian.console.aliyun.com/1、当我们在COW中,去直接调用千问的某一个大模型时,只需要更改key和model即可。以调用“qwen-max”模型为例,在/root/chatgpt-on-wechat/文件夹下,打开config.json文件:需要更改"model",和添加"dashscope_api_key"。那么如何去获取key呢:视频教程:图文教程:以下是参考配置:示意图:注意:需要“实名认证”后,这些key才可以正常使用,如果对话出现“ Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明你没有实名认证,点击去[实名认证](https://account.console.aliyun.com/v2?spm=5176.28508143.J_4VYgf18xNlTAyFFbOuOQe.13.38a9154amP8978#/authc/types),或查看自己是否已认证。

张梦飞:【知识库】FastGPT+OneAPI+COW带有知识库的机器人完整教程

1、回到宝塔,打开【终端】继续,一行一行依次粘贴,依次回车:cd /root2、这个注意一定要粘贴完整,这里容易粘贴不全。git clone https://github.com/zhayujie/chatgpt-on-wechat3、出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次4、继续一行一行,依次输入:cd chatgpt-on-wechat/pip install -r requirements.txt5、等待执行完成,如上图后,继续粘贴:pip install -r requirements-optional.txt6、上边的都执行完成后。现在我们到“文件”菜单中去执行,点击文件-找到root,进入root文件夹,找到chatgpt-on-wechat文件夹,并进入。7、点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)8、粘贴进入,点击回车。点击后,关闭此弹窗。cp config-template.json config.json9、刷新页面。在当前目录下,找到config.json文件。如下图:10、双击这个文件,我画红框的地方是需要修改的地方。*因为这个地方对格式和符合要求比较严格,如果是小白,建议你直接复制我下方的配置。11、删除上图文件里的所有代码。复制下边的代码,粘贴到文件里。

Others are asking
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
如果我想要系统学习coze,我应该怎么安排?
如果您想要系统学习 Coze,可以参考以下安排: 第一期共学回放 5 月 7 号() 大聪明分享|主题:Agent 的前世今生 每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么 20:00@?AJ 主持开场 20:00 21:00 大聪明分享 21:00 21:30 关于 Coze 随便聊聊 5 月 8 号() 大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze 20:00 21:20 大圣分享 5 月 9 号() 艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例 20:00 21:00 艾木分享 21:00 21:30 线上答疑 5 月 10 号() 罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书 20:00 21:00 罗文分享 5 月 11 号() Itao 分享|主题:和 AI 成为搭子 20:00 21:00 Itao 分享 21:00 21:30 线上答疑 Agent 搭建共学快闪 0619 日程安排 6 月 19 日 20:00 开始 从零到一,搭建微信机器人 0 基础小白 张梦飞 小元 金永勋、奥伏 6 月 20 日 20:00 开始 Coze 接入、构建你的智能微信助手 完成第一课 张梦飞 吕昭波 安仔、阿飞 6 月 23 日 20:00 开始 微信机器人插件拓展教学 完成第一课 张梦飞 安仔 大雨 空心菜、AYBIAO、阿飞 6 月 24 日 20:00 开始 虚拟女友“李洛云”开发者自述 完成第一课 皮皮 安仔 6 月 25 日 20:00 开始 FastGPT:“本地版 coze"部署教学 完成第一课 张梦飞 银海 金永勋、AYBIAO 6 月 27 日 20:00 开始 Hook 机制的机器人使用和部署教学 0 基础小白,一台 Windows 10 以上系统的电脑 张梦飞 Stuart 阿飞、空心菜
2025-04-14
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南:长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 其他相关基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-04-13
COW微信机器人、FastGpt微信机器人、COZE微信机器人的区别?
以下是 COW 微信机器人、FastGpt 微信机器人、COZE 微信机器人的区别: COW 微信机器人: 基于 Hook 机制,具有相对更高的稳定性和安全性,更简单易上手。 目前插件相对较少,仅支持 Windows 系统。 可以不用服务器,对小白更加友好。 能够结合 FastGPT 进行使用。 具备基于知识库的 AI 回复、支持积分系统、支持自动拉人、检测广告、自动群发等功能,还有安全新闻定时推送、Kfc 文案、星座查询、天气查询等有趣的小功能。 FastGpt 微信机器人:可以与 COW 微信机器人结合使用。 COZE 微信机器人:在 6 月底的微信机器人共建中有所提及,有多种玩法,如对接 llm key 的玩法等。在百炼平台里的“应用”概念类似于 COZE 中的“bot”。
2025-03-11
cow微信机器人
以下是关于基于 COW 框架的 ChatBot 实现步骤的详细介绍: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信等平台。 实现内容包括: 打造属于自己的 ChatBot,具备文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能。 常用开源插件的安装应用。 正式开始前需知: ChatBot 与在各大模型网页端使用的区别在于本实现思路需接入大模型 API(API 单独付费)。 风险与注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用,包括对大模型生成内容的甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 特点: 多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 多模型选择,如 GPT3.5、GPT4.0、Claude、文心一言、讯飞星火、通义千问、Gemini、GLM4、LinkAI 等。 多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 多部署方法,包括本地运行、服务器运行、Docker 方式。 部署项目的具体步骤: 1. 下载 COW 机器人项目(chatgptonwechatmaster.zip)并解压缩。 2. 解压后打开 COW 文件夹,在空白处 shift+鼠标右键,点击“在此处打开 Powershell 窗口”。 3. 在 Powershell 窗口中,粘贴“pip install r requirements.txt”,等待执行完成后,继续粘贴“pip install r requirementsoptional.txt”。 4. 执行完成后关闭窗口,在当前目录下找到 configtemplate.json 文件。新生成的是配置文件,右键使用记事本打开,修改画红框的地方。小白建议直接复制给定的配置,删除新文件里的所有代码,复制给定代码粘贴到文件里,找到第 4 行,把注册并保存好的千问 API key 粘贴到双引号里,修改完保存并关闭文件。 5. 保存上述文件,然后在当前文件下,找到 plugins/godcmd 文件夹,复制 config.json.template 重命名为 config.json,双击进入后设置 password 和 admin_users,可先设置为和示例一样,之后再改,保存后关闭。 6. 重新回到 chatgptonwechat/文件路径下,空白处右键,打开 Powershell 里复制粘贴“python app.py”。 基于张梦飞同学的更适合小白的使用教程:
2024-10-10
微信机器人 cow
以下是在自己的电脑上部署 COW 微信机器人项目的详细步骤: 1. 安装环境: 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 在命令窗口中,粘贴入以下代码,确认是否有 python 和 pip。 如果没有 python 和 pip,先进行 python 的安装。 2. 部署项目: 下载 COW 机器人项目,解压缩。 解压后,打开 COW 文件夹。 在空白处,shift+鼠标右键,点击“在此处打开 Powershell 窗口”。 在 Powershell 窗口中,粘贴进入: pip install r requirements.txt 等待执行完成后,继续粘贴:pip install r requirementsoptional.txt 上边的都执行完成后,关闭窗口。在当前目录下,找到 configtemplate.json 文件。 新生成的便是配置文件,右键使用记事本打开这个文件,修改画红框的地方。 删除新文件里的所有代码,复制提供的代码,粘贴到文件里,并在第 4 行把一开始注册并保存好的千问 API key 粘贴到双引号里,修改完之后,点击保存,关闭文件。 保存上述文件,然后在当前文件下,找到 plugins/godcmd 文件夹,复制 config.json.template 重命名为 config.json。 双击 config.json,进入后,设置下 password 和 admin_users,点击保存后关闭。 重新回到 chatgptonwechat/这个文件路径下,空白处右键,打开 Powershell 里复制粘贴进入:python app.py,然后将会弹出二维码,扫码登录即可。 注意事项: 1. 程序将在您的电脑本地运行,假如您关掉了窗口,那么进程也就结束。所以,如果想让 AI 持续使用,就必须保持窗口打开和运行,也就是电脑不能关。 2. 如果发现突然不管用了,可以点击一下窗口,然后点一下空格。因为在选中状态下,powershell 窗口是不继续执行的。 3. 其他操作与服务器部署的操作一致。 4. 参加机器人比赛的,可以参考其他教程,自行更改配置。
2024-09-02
Cow好像接不上coze 的数据库,在coze 上能正常使用,到cow上就无法获取信息
以下是关于 Cow 接不上 coze 数据库的可能解决方法: 1. 服务器设置方面: 点击“Docker”中的“编排模板”中的“添加”按钮。 备注说明版和无备注干净版的操作有所不同。 将编译好的内容复制进来。 在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”。提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。 2. 直接调用大模型方面: 当在 COW 中直接调用千问的某一个大模型时,只需要更改 key 和 model 即可。以调用“qwenmax”模型为例,在/root/chatgptonwechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。获取 key 的方式有视频教程和图文教程。注意需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明没有实名认证,可点击去,或查看自己是否已认证。 3. 安装并接入 cow 方面: 回到宝塔,打开【终端】。 依次粘贴并回车:cd /root ;git clone https://github.com/zhayujie/chatgptonwechat 。出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次。 继续依次输入:cd chatgptonwechat/ ;pip install r requirements.txt ;pip install r requirementsoptional.txt 。 到“文件”菜单中执行,点击文件找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。 点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)。 粘贴并回车:cp configtemplate.json config.json ,刷新页面。在当前目录下,找到 config.json 文件。删除文件里的所有代码,复制提供的代码粘贴到文件里。
2024-08-13
知识库里有没有阿里云部署cow教程
以下是阿里云部署 cow 的完整教程: 一、注册云服务器和获取模型 key 1. 刚才在这里保存的“外网面板地址”,点击打开。 2. 输入账号密码,即上图中的 username、password。 3. 第一次进入会让您绑定一下,点击免费注册,注册完成后,返回此页,登录账号。 4. 首次会有个推荐安装,只安装第一个即可。其他的取消勾选。 5. 点击“终端”,会让您关联,点击关闭就好。 七、安装并接入 cow 1. 回到宝塔,打开【终端】 继续,一行一行依次粘贴,依次回车: cd /root git clone https://github.com/zhayujie/chatgptonwechat 这个注意一定要粘贴完整,这里容易粘贴不全。 出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次。 继续一行一行,依次输入: cd chatgptonwechat/ pip install r requirements.txt 等待执行完成,如上图后,继续粘贴: pip install r requirementsoptional.txt 上边的都执行完成后。 现在我们到“文件”菜单中去执行,点击文件找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。 点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑) 粘贴进入,点击回车。点击后,关闭此弹窗。 cp configtemplate.json config.json 刷新页面。在当前目录下,找到 config.json 文件。 双击这个文件,找到第 4、5 行,把刚才 FastGPT 里拿到 API 和 key,根据要求粘贴到双引号里。这也是您唯一需要修改的地方。修改完之后,点击保存,关闭文件。 依然在当前文件,【终端】里进行,依次复制粘贴进入: cd plugins/godcmd cp config.json.template config.json 操作完成后,退出窗口,刷新一下。进入/root/chatgptonwechat/plugins/godcmd, 下边是依次进入窗口的路径, 双击 config.json,进入后,设置下您的 password 和 admin_users,可以设置为和我一样的,后边再改,点击保存后关闭。 重新回到/root/chatgptonwechat/这个文件路径下,点击终端,继续依次粘贴: touch nohup.out nohup python3 app.py & tail f nohup.out 使用微信扫码(建议使用小号)。完成
2024-07-19
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
现在市面上能够购买的AI产品有哪些
以下是一些市面上能够购买的 AI 产品: 制作 PPT 的 AI 产品: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网站:https://gamma.app/ 美图 AI PPT:可通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。网站:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网站:https://www.mindshow.fun/ 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能。网站:https://zhiwen.xfyun.cn/ 其他 AI 应用: 联想设备管理平台:AI 办公设备管理系统,利用数据分析、物联网技术,管理办公设备,提高设备利用率。 新氧 APP:AI 美容护肤机构推荐平台,通过数据分析、自然语言处理技术,为用户推荐优质的美容护肤机构。 大众点评亲子频道:AI 儿童教育机构推荐平台,借助数据分析、自然语言处理技术,为家长推荐优质的儿童教育机构。 汽车之家车商城:AI 汽车销售平台,运用数据分析、自然语言处理技术,为消费者提供汽车购买渠道。 彩云天气 APP:AI 天气预报预警系统,利用数据分析、机器学习技术,提供准确的天气预报预警。 腾讯觅影:AI 医疗影像分析平台,基于数据分析、机器学习技术,分析医疗影像,辅助医生诊断。 钉钉会议管理功能:AI 会议管理系统,采用自然语言处理、数据分析技术,管理会议流程,提高会议效率。 微拍堂书法作品拍卖频道:AI 书法作品销售平台,借助图像识别、数据分析技术,为书法爱好者提供作品销售渠道。
2024-12-27
目前市面上能力最强的AI模型是哪家的
目前市面上能力较强的 AI 模型来自多家公司和机构。 OpenAI 的 GPT4 是一个表现出色的大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。此外,OpenAI 还带来了其他优秀的模型,如 DALL·E 3 等。 Meta 开发的 Llama 3.1 是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡,标志着首次开放模型缩小与专有前沿的差距。 谷歌 DeepMind 与纽约大学团队开发的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现优异。 中国的 DeepSeek、零一万物、知谱 AI 和阿里巴巴等开发的模型在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了 SOTA。 Mistral 7B 是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 需要注意的是,AI 模型的能力评估会因不同的任务和应用场景而有所差异,且技术在不断发展和进步,新的更强的模型可能会不断涌现。
2024-11-18
我有一个文档字数可能比较多,我希望ai能基于这个文档内容对我的问题进行回答,目前市面上能实现这一功能比较好的工具有哪些?
目前市面上能实现基于文档内容回答问题这一功能较好的工具包括: 1. 飞书:通过企业搜一搜或者自定义问答,智能伙伴可以基于用户有权限的文档内容回答用户提问。 2. Grammarly:不仅是语法和拼写检查工具,还提供一些排版功能,可改进文档整体风格和流畅性。 3. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 4. Latex:常用于学术论文排版,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 5. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 6. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 7. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 8. Excel Labs:Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 9. Microsoft 365 Copilot:微软推出的整合 Word、Excel、PowerPoint、Outlook、Teams 等办公软件的 AI 工具,通过聊天形式完成用户需求。 10. Formula Bot:提供数据分析聊天机器人和公式生成器功能,可自然语言交互进行数据分析和生成 Excel 公式。 11. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成相关文本内容、执行情感分析、语言翻译等任务。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 较受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-10-18
AI在未来运用在人形机器人上能实现什么
在未来,AI 运用在人形机器人上能够实现以下方面: 1. 为人类生活带来更智能、更便捷的体验,提供各种生活服务和生产制造服务。 2. 打造能够与人类建立深度互动的智能体,自主处理与复杂物理世界的交互。 3. 利用端到端的 AI 运动控制技术驱动软硬件一体化的机器人系列产品,开发在真实世界中生产、制造以及服务的人形机器人产品。 4. 拥有先进的计算机视觉算法、人工智能算法、控制和路径规划算法,对 3D 物体的姿势估计具有出色的感知能力。 5. 可以为机器人提供模仿训练数据,人形机器人可能在人类世界中更加有用,部署更加高效。 6. 借助相关技术,人形机器人能够从少量人类演示中学习,帮助完成日常任务,通过观察模仿人类的运动。 7. 由全新的机器人芯片提供支持,实现更强大的智能功能。
2024-09-30