Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

知识库和文件夹有什么区别

Answer

知识库和文件夹有以下区别:

  • 功能和用途:知识库是用于存储和管理外部数据,让 Bot 可以与指定的数据进行交互,并且会自动将文档分割成内容片段进行存储,通过向量搜索检索最相关内容来回答用户问题。而文件夹主要是用于对文件或数据进行分类和组织,方便用户查找和管理。
  • 组成和结构:知识库由大到小可分为知识库、单元和分段。单元是可上传的最小内容单位,可以是一个.txt、.pdf、.csv 文件或一个网页。分段是一个单元切分成的多个部分,是模型查询的最小单位。
  • 与 Bot 的关系:知识库是提前内置在 Bot 内部的,一般只能用作检索使用。而文件夹与 Bot 的交互相对较少。
  • 数据处理:数据库是偏编程的概念,非编程同学可以直接参考官方文档的教程操作一遍。数据库既可以提前内置在 Bot 内部,也可以在和 Bot 互动的过程中将某些数据写入数据库,当作存储组件使用。而知识库主要是提取和存储长期知识。
Content generated by AI large model, please carefully verify (powered by aily)

References

创建并使用知识库

扣子的知识库功能提供了简单易用的方式来存储和管理外部数据,让你的Bot可以与指定的数据进行交互。将数据上传到知识库后,扣子会自动将你的文档分割成一个个内容片段进行存储,并通过向量搜索来检索最相关的内容来回答用户问题。知识库由大到小可分为:知识库:一整套领域知识,是Bot加载的最小单位。单元:知识库的一部分,可上传的最小内容单位可以是一个.txt、.pdf、.csv文件或一个网页。分段:一个单元切分成多个分段,模型查询的最小单位。分段内容的完整度和准确性度会影响模型回答问题的准确性。

大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库

海外参考文档:https://www.coze.com/docs/zh_cn/database.html国内参考文档:https://www.coze.cn/docs/guides/database数据库是偏编程的概念,非编程同学可以直接参考官方文档的教程操作一遍数据库和知识库的区别主要有几点知识库是提前内置在Bot内部的,一般只能用作检索使用数据库则是既可以提前内置在Bot内部,也可以在和Bot互动的过程中将某些数据写入数据库,当作存储组件使用

知识表示和专家系统

符号人工智能的早期成就之一是专家系统——为充当某个有限问题领域的专家而设计的计算机系统。它们基于从一个或多个人类专家那里提取的知识库,并包含一个推理引擎,在此基础上进行推理。专家系统就像人类的推理系统一样,包含短期记忆和长期记忆。同样,在以知识为基础的系统中,我们会区分以下几个部分:问题记忆(Problem memory):包含与当前要解决的问题有关的知识,如病人的体温或血压、是否有炎症等。这种知识也被称为静态知识(static knowledge),因为它包含了快照信息,记录着我们在当前状态下对问题的了解——即所谓的问题状态(problem state)。知识库(Knowledge base):代表某个问题领域的长期知识。它是从人类专家那里人工提取的,不会因外部的咨询而改变。由于它允许我们从一个问题状态前往另一个问题状态,因此也被称为动态知识(dynamic knowledge)。推理引擎(Inference engine):协调在问题状态空间中搜索的整个过程,必要时向用户提问。它还负责找到适用于每个状态的正确规则。举例来说,下面这个专家系统是根据动物的物理特征来判断动物的:

Others are asking
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
flux ae.sft放在哪个文件夹
在 ComfyUI 中,flux ae.sft 应放在 ComfyUI/models/vae/ 文件夹下。 Flux 模型在 ComfyUI 中的使用,需要将相关模型放在对应的目录下。具体来说,t5xxl_fp16.safetensors 放在 ComfyUI/models/clip/ 目录下,clip_l.safetensors 放在 ComfyUI/models/clip/ 目录下,ae.safetensors 放在 ComfyUI/models/vae/ 目录下,flux1dev.safetensors 放在 ComfyUI/models/unet/ 目录下。flux1dev.safetensors 是底模,ae.safetensors 是 VAE,clip_l.safetensors 和 t5xxl_fp16.safetensors 是关于文字语言编码。
2025-03-07
IP-Adapter放在哪个文件夹
IPAdapter 的存放位置如下: 节点包:下载或 git clone 新的节点包到 ComfyUI/custom_nodes/文件夹下。 模型: /ComfyUI/models/clip_vision:(SDXL)。 /ComfyUI/models/ipadapter:。 如果相应文件夹不存在,需要新建并重命名。
2025-03-07
flux模型放在那个文件夹
FLUX 模型的放置位置如下: FLUX.1等版本的模型应放在 ComfyUI/models/unet/文件夹中。如果爆显存了,“UNET 加载器”节点中的 weight_dtype 可以控制模型中权重使用的数据类型,设置为 fp8 可降低显存使用量,但可能会稍降质量,默认的 weight_type 显存使用较大。 t5xxl_fp16.safetensors 和 clip_l.safetensors 应放在 ComfyUI/models/clip/文件夹里面。可以使用 t5xxl_fp8_e4m3fn.safetensors 来降低内存使用率,若有超过 32GB 内存,建议使用 fp16。 下载的 Vae 模型应放入 ComfyUI/models/vae 文件夹。 同时,以下模型也有对应的放置位置: flux1dev.safetensors 放在 ComfyUI/models/unet/目录下。 t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/目录下。 ae.safetensors 放在 ComfyUI/models/vae/目录下。 flux1dev.safetensors 是底模,ae.safetensors 是 VAE,clip_l.safetensors 和 t5xxl_fp16.safetensors 是关于文字语言编码。
2025-03-03
有没有带有文件夹功能的ai
目前,带有文件夹功能的 AI 仅在 Cursor Chat 中受支持。您还可以将 Cursor 中的整个文件夹作为上下文引用,@Folders 对于希望为 AI 提供大量上下文的长上下文聊天特别有用,相关链接为:https://docs.cursor.com/chat/overviewlongcontextchat 。 此外,能联网检索的 AI 也是存在的。例如,ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网;Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型;Bing Copilot 作为 AI 助手,旨在简化在线查询和浏览活动;还有如 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 在 Excel 方面,有以下几种增强数据处理和分析能力的 AI 工具和插件: 1. Excel Labs:是 Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求,Copilot 自动完成任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 以上内容由 AI 大模型生成,请仔细甄别。
2024-12-21
我要整理文件夹中的图片, 请推荐一款适合的AI软件
以下为您推荐适合整理文件夹中图片的 AI 软件: 1. 去水印方面: AVAide Watermark Remover:在线工具,支持多种图片格式,如 JPG、JPEG、PNG、GIF 等。操作简单,上传图片、选择水印区域,保存并下载处理后的图片,还提供去除文本、对象、人物、日期和贴纸等功能。 Vmake:可上传最多 10 张图片,AI 自动检测并移除水印,适合需快速去水印并在社交媒体分享图片的用户。 AI 改图神器:提供 AI 智能图片修复去水印功能,可一键去除图片中多余物体、人物或水印,支持直接粘贴图像或上传手机图像,操作简便。 2. 图生图方面: Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感,丰富创作过程。 Retrato:AI 工具,将图片转换为非凡肖像,有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计,将上传照片转换为芭比风格,效果佳。 这些 AI 模型通过组合技术如扩散模型、大型视觉转换器等,可以根据文本或参考图像生成具有创意且质量不错的相似图像输出,但仍有一些局限,如偶尔会出现性能不稳定、生成内容不当等问题。内容由 AI 大模型生成,请仔细甄别。您可以根据具体需求选择最适合您的工具。
2024-09-03
AI 衡量一个AI任务的指标是不是有准确率 和召回率 分别啥区别
在 AI 任务中,常见的衡量指标包括准确率和召回率。准确率(Accuracy)衡量的是模型预测正确的比例。而召回率主要用于信息检索等任务,衡量的是模型能够正确检索出相关内容的比例。 在摘要任务中,一般用 ROUGE 指标,其中 ROUGE2 是把两个 sequence 按 2gram 的方式做切分做频次统计,然后计算 pred 和 gt 之间的召回率。 对于不同的 AI 任务,还有其他多种指标,如在 NLP 中: 信息检索任务常用 NDCG@K 指标,核心衡量最相关文档是否排序足够靠前。 文本生成任务可用 BitsperByte 指标。 针对二分类任务,一般用 ECE 指标(Expected Calibration Error)来度量模型输出概率 p 时,最终正确率真的为 p 的一致性。 此外,还有一些其他方面的评估指标,如不确定性(Calibration and Uncertainty)、鲁棒性(Robustness,包括 invariance 和 equivariance)、公平性(Fairness)、偏见程度(Bias and stereotypes)、有毒性(Toxicity)等。 传统的 RAG 解决方案在检索效率和准确性上存在问题,Anthropic 通过“上下文嵌入”解决了部分问题,但 RAG 的评估仍待解决,研究人员正在探索新的方法,如 Ragnarök。 在提示词设计方面,Claude 官方手册提出“链式提示”的方法理念,将复杂任务拆解为多个步骤,具有准确率高、清晰性好、可追溯性强等好处。ChatGPT 官方手册也有类似理念,同时还有相关论文如在 ICLR 2023 上发表的提出 LeasttoMost Prompting 提示词策略的论文,在文本理解和生成场景中表现优秀。
2025-04-09
工作流 和 智能体的区别?
工作流和智能体的区别主要体现在以下几个方面: 定义: 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 功能: 智能体是一个自动化的“助手”,用来执行特定任务,擅长做一些具体的、重复性的任务,比如客服聊天、推荐商品、处理订单等,但只能按照预先设定的规则和任务来做事,如果遇到超出范围的情况,就不知道怎么办了。 工作流是一系列任务的流程,决定了每个步骤应该做什么,可以处理一个完整的过程,比如从客户下单、付款到发货和售后服务,涵盖了所有步骤和环节,更灵活,能够适应变化,可以调整步骤和规则来应对不同的情况,不需要一开始就固定下来。 范围: 智能体是特定任务的“助手”,用于局部执行任务。 工作流是一个“计划”或“路线图”,指导整个任务的流程。简单说,工作流是全局的,智能体是局部的。 在业务中,通常需要的是工作流而非单个智能体,因为整个业务流程设计至关重要。例如,在烹饪中,关键不在于使用多贵的锅,而是按步骤完成每道工序。因此,工作流才是解决问题的关键,它帮助优化思路、提升效率。设计好工作流才能大幅提升整体业务效率。
2025-04-08
在ai context中,token和word的区别是?
在 AI 领域中,Token 和 Word 有以下区别: 定义和范围:Token 通常是大语言模型处理文本数据时的一个单元,在不同语境下,可能代表一个字、一个词、一个句子、标点、词根、前缀等,更加灵活。而 Word 一般指能够表达一定意义的独立单位,如单词。 语言处理:在英文中,一个 Word 通常是一个词或标点符号。在一些汉语处理系统中,一个 Word 可能是一个字或一个词。而 Token 在不同的语言模型和处理系统中,对应的范围和形式有所不同。 作用和意义:Token 不仅是文本数据的单位,还可能携带丰富的语义、句法等信息,在模型中有着对应的向量表示。Word 主要用于传达相对明确和完整的意义。 计算和收费:大模型的收费计算方法以及对输入输出长度的限制,通常是以 Token 为单位计量的。 例如,在处理“ I’m happy ”这句话时,“I”、“’m”、“happy”可能被视为 Token,而“I’m happy”整体可看作一个 Word 。
2025-04-08
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
人工智能搜索与百度搜索的区别
人工智能搜索与百度搜索存在以下区别: 1. 底层技术:人工智能搜索的底层技术常包括“RAG”,即“检索增强生成”,包括检索、增强和生成三个步骤。而百度搜索的技术构成相对复杂,不断融合新的技术和功能。 2. 发展路径:在中国市场,相较欧美,百度作为搜索巨头已将文心一言大模型融入搜索,提供对话式回答和创作功能。同时,市场上还涌现出如秘塔 AI 搜索等创新型产品,主打“无广告,直接答案”,提供结构化结果和引用来源等特色功能。 3. 产品更新与竞争态势:Google 仍在战斗前线密集释放技能,与其他公司竞争激烈。而百度在新模型发布方面相对较少。此外,Google 推出新功能曾引发大量用户不满,而百度的相关新功能在页面布局和使用体验上更靠近某些特定产品,并聚合了多种创作能力和智能体快捷调用窗口。百度文库也上线了“AI 全网搜”功能,打通了特定工作流,产品功能较为完整,但受限于模型能力,生成内容尚有提升空间。
2025-04-01
用ai建立知识库和直接使用ai有什么区别、
用 AI 建立知识库和直接使用 AI 主要有以下区别: 直接使用 AI 时,AI 生成的内容可能较为笼统模糊,就像遇到只会说“很急,今天就要”却不提供具体指导的领导。若想让 AI 成为得力助手,需对复杂任务进行拆解,提供方法论和定义输出格式。 建立知识库就如同为 AI 准备了“教科书”。知识库灵活,但偶尔会出现查不到内容而“猜题”的情况。例如,将《梦想与颠覆》卡牌等相关内容导入作为 AI 可调用的知识库,后续在创作中激活知识库,AI 会根据场景自动匹配库内素材,使输出更具针对性。 相比之下,微调类似于让 AI“自己真的学会了整本书”,答题更快更准,但训练成本高。微调适合高精度、长期任务,而知识库更适合临时查找、快速问答。
2025-03-30