Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想知道大模型厂商内置的提示词一般都有多少个字比较合理?并给出数据来源

Answer

大模型厂商内置的提示词字数并没有一个固定的标准,其合理性取决于多种因素。

一般来说,提示词的字数可能寥寥无几,但更多时候需要提供详尽的上下文和相关细节。例如,在要求 GPT 删除个人信息的官方示例中,提示词包括背景、定义术语、给出模型应如何完成任务的具体细节等多个方面。

在一些经验分享中提到,提示词中的示例 5 - 6 个效果最佳。同时,提示词的整体结构需要调整和优化,除了技能外还应有完整的工作流程设定,角色信息中的人设应特点鲜明,避免同质化。还需注意避免矛盾和重复的提示词内容,可通过调整提示词顺序的方法提高重要指令的权重。

数据来源包括胡凯翔基于阅读 Claude Cookbook 的思考和测试、Agent 共学“谁是人类”活动参赛心得分享等。

Content generated by AI large model, please carefully verify (powered by aily)

References

胡凯翔:构建提示词的方法——基于阅读 Claude Cookbook 的思考和测试

本身用于“提示”的提示词字数寥寥无几,大部分都是基于“上下文”的对招标文件和项目方案的拆解。注意:如果你指望GPT给出的内容不是空口白话,首先需要给它足以发挥的资料,就像领导找你写材料的时候,我们多么希望领导同时给出相关的资料,最好能把相关资料的重点都提炼出来,层级分清楚,打好关键词,一眼明了(做个梦)。提供的上下文越详尽,与需要完成任务的相关性越强,则大语言模型给予的反馈下限越高;提示词的技巧则更多地挖掘大语言模型的潜力,发挥其上限。双向奔赴才是最优选择。讲回CookBook,官方示例中就是遵循以上的条件给出的提示词。接下来我会提供一个官方的示例:一个用户要求GPT删除个人信息,官方的prompt中提供了:1、背景;(例如,我们为什么希望完成任务)2、定义术语:(个人信息=姓名、电话号码、地址)3、给出模型:应该如何完成任务的具体细节(用XXX代替个人信息)更多的细节,有利于Claude更好地完成任务,让我们来看一下官方的好例子:

血与泪的教训!!!千万不要让微信机器人和你的老婆/女朋友聊天--Agent 共学"谁是人类"活动参赛心得分享

提示词的整体结构需要调整和优化,除了技能外还应该有完整的工作流程设定(逻辑链路),提高输出质量角色信息中的人设应该特点鲜明,具备人类的真实性格,避免同质化输出真实想法,其实有些对话大模型输出的已经符合人类的特征了,只是在比赛时一旦同质化就直接GG。所以只要再解决同质化的问题,你的BOT将无往不胜增加情绪变化或者心情的设定,提高回复内容的拟人程度可通过提示词增加Bot的短期记忆提示词中的示例5-6个效果最佳,其它QA可通过知识库补充避免矛盾和重复的提示词内容,如果部分提示词不生效应该检查是否有矛盾的地方,或者是否过于冗长。可通过调整提示词顺序的方法提高重要指令的权重利用大模型反推回复内容是学习大模型输出逻辑的好习惯建议多参加比赛,以赛代练,绝对收获良多,就算比赛失利,经验也宝贵使用的大模型:通义千问Plus,通义千问开源72b温度设置:推荐0.35-0.45之间,如果调太高,大概率会不遵从提示词的字数限制

小七姐:文心一言4.0、智谱清言、KimiChat 小样本测评

目标模型表现回溯一下本轮测试目的:根据提供的范本让大模型总结结构化提示词的特征有点并生成类似提示词“根据用户输入的主题,生成幽默且有病毒传播特点的短视频的脚本”这个需求的难点在于对于“幽默”和“病毒式传播”的理解。从生成结果看来,大语言模型显然对于“病毒式传播”的理解还没有过于深入的提炼,只有MoonShot AI在最后一段给出了“提供短视频制作建议,帮助用户实现病毒式传播”的进一步提示,其他大语言模型都只是提到了这么一个词。值得注意的是,所有大模型对关键信息的提炼都非常准确。智谱清言70文心一言75Moonshot AI 80

Others are asking
你有内置sd吗
Stable Diffusion(SD)相关知识如下: SD 内置了 LyCORIS,使用 LoRA 模型较多,其与 LyCORIS 相比可调节范围更大。LoRA 和 LyCORIS 的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间。管理模型时可进入 WebUl 目录下的 models/LoRA 目录,在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 SD 的安装:系统需为 Win10 或 Win11。Win 系统查看配置,包括查看电脑系统(在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格)和查看电脑配置(需要满足电脑运行内存 8GB 以上、是英伟达(NVIDA)的显卡、显卡内存 4GB 以上。打开任务管理器:同时按下 ctrl + shift + esc,查看电脑运行内存和显卡内存)。配置达标可跳转至对应安装教程页,如 【SD】无需 Lora,一键换脸插件 Roop:勾选相关项目,确保包含 Python 和 C++包。更改安装位置,点击右下角安装。安装时间长需耐心等待。安装好后,打开 SD 文件目录下的相关文件夹,在地址栏输入“cmd”回车,在打开的 dos 界面粘贴“python m pip install insightface==0.7.3 user”安装 insightface。若此阶段出错,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),后台回复【SD】下载。安装完成后,重新打开启动器,后台会继续下载模型,需全程科学上网。Roop 插件主要适用于真实人脸替换,对二次元人物作用不大。选用真实系模型,设置相关参数后生成,若人脸像素偏低模糊,可发送到“图生图”进行重绘。
2025-03-06
请罗列一些内置大模型的手机产品
以下是一些内置大模型的手机产品: 华为、荣耀、小米、OPPO、VIVO、三星等品牌都已宣布会在手机端侧搭载大模型。 三星 S24 搭载了 Google Gemini Nano。 Vivo 推出了五个大型自研模型,宣称在中文能力方面达到行业第一。 目前这些手机搭载大模型还存在一些问题,如只能用最新的骁龙 8Gen3 旗舰处理器,且耗能散热都是问题。短期内的端上智能仍有诸多限制。
2024-11-29
帮我列举2025年3月1日以来,国内外、闭源开源模型厂商的更新记录。
以下是 2025 年 3 月 1 日以来,国内外、闭源开源模型厂商的部分更新记录: 2025 年 3 月 20 日,OpenAI 推出了一套全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持,包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 李开复公开表示 OpenAI 面临生存危机,商业模式不可持续。他强调中国的 DeepSeek 以极低成本提供接近的性能,开源模式将主导未来 AI 发展。他认为企业级 AI 应用将成为投资重点,资源限制反而促进了创新。李开复大胆预测,中国将出现三大 AI 玩家,竞争愈发激烈。 SuperCLUE 发布《中文大模型基准测评 2025 年 3 月报告》,指出 2022 2025 年经历多阶段发展,国内外模型差距缩小。测评显示 o3mini总分领先,国产模型表现亮眼,如 DeepSeekR1 等在部分能力上与国际领先模型相当,且小参数模型潜力大。性价比上,国产模型优势明显。DeepSeek 系列模型深度分析表明,其 R1 在多方面表现出色,蒸馏模型实用性高,不同第三方平台的联网搜索和稳定性有差异。 以上信息来源包括: 《》 《》 《》
2025-03-26
国内做视觉理解的大模型厂商有哪些
国内做视觉理解的大模型厂商有以下这些: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com 上海: 商汤(日日新大模型):https://www.sensetime.com MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,在 0 基础手搓 AI 拍立得的模型供应商选择中,还有以下视觉类大模型厂商: 智谱 GLM4V:通用视觉类大模型,拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本为 0.05 元/千 tokens, 阿里云百炼 qwenvlplus:通用视觉类大模型,拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为¥0.008/千 tokens,训练成本为¥0.03/千 tokens, 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本为¥0.005~0.015/千 tokens,输出成本为¥0.02~0.07/千 tokens, 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在¥0.05~0.1/次,
2024-12-19
WayToAGI是什么?是哪家厂商做的?
WaytoAGI 直译就是通往 AGI 之路,它是一个自组织的AI社区,发起人是 AJ 和轻侯。AGI 指通用人工智能。
2024-09-29
国内大模型厂商对比
以下是国内大模型厂商的相关情况: 8 月正式上线的国内大模型: 北京的五家企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海的三家企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 聊天状态下能生成 Markdown 格式的:智谱清言、商量 Sensechat。 目前不能进行自然语言交流的:昇思(可以对文本进行是否由 AI 生成的检测,类似论文查重,准确度不错)。 受限制使用的:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值)。 特色功能:昇思——生图,MiniMax——语音合成。 中文大模型基准测评 2023 年度报告中的情况: 从大厂和创业公司的平均成绩来看,大厂与创业公司差值约 6.33 分,较 11 月份差距在增大,说明大厂在大模型竞争中长期资源投入方面有一定优势。 过去八个月国内模型在 SuperCLUE 基准上的前三名: 12 月:文心一言 4.0 11 月:文心一言 4.0 10 月:BlueLM 9 月:SenseChat3.0 通过 SuperCLUE 测评结果发现,国内大模型的第一梯队有了更多新的模型加入。头部模型如文心一言 4.0、通义千问 2.0 引领国内大模型的研发进度,部分高质量大模型紧追不舍,分别在闭源应用和开源生态中形成自己独特的优势。 从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2024-08-30
智谱跟其他厂商的差异和优势是什么
智谱与其他厂商的差异和优势主要体现在以下几个方面: 1. 模型研发:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。22 年就和清华一起自研了 GLM130B。 2. 技术来源:由清华大学计算机系技术成果转化而来,背后有清华大学研发团队的科研成果支持。 3. 产品设计:以 ChatGPT 为对标,努力打造类似的用户体验。 4. 智能体应用:是国内首批开放智能体应用的 AI 公司之一,在智能体开发和模型优化方面积累了丰富经验和技术。 5. 性能表现:在逻辑推理和处理复杂提示词方面表现出明显优势,在处理需要深度思考和分析的任务时表现出色。 6. 产品体系:合作研发了双语千亿级超大规模预训练模型 GLM130B,并构建了高精度通用知识图谱,形成数据与知识双轮驱动的认知引擎。基于此模型打造了 ChatGLM,还推出了认知大模型平台 Bigmodel.ai,包括 CodeGeeX 和 CogView 等产品,提供智能 API 服务。
2024-08-30
ai模型chatglm,百川大模型,通义千问,yi系列的模型厂商和团队背景,ai产品调用api的成本
以下是关于您提到的 AI 模型的厂商和团队背景以及 AI 产品调用 API 成本的相关信息: 厂商和团队背景: 通义千问:由阿里开发,接口可在 https://dashscope.console.aliyun.com/ 创建 API key。 智谱 AI(ChatGLM):由智谱 AI 开发,相关网址为 https://chatglm.cn 。 百川大模型:由百川智能开发,网址为 https://www.baichuanai.com/ 。 关于 AI 产品调用 API 的成本: 目前国内的大模型大多限制一定免费额度的 Token,各平台 API 调用计费是按计算 token 费率定价,具体收费标准不同,需自行留意对应官网。例如 GPT3.5、GPT4、文心一言、讯飞星火、通义千问、mimimax 等,收费标准不一,不做统一赘述。
2024-08-20
设计一条大模型学习之路,并给出推荐资料
以下是为您设计的大模型学习之路及推荐资料: 学习之路: 1. 了解大模型的基本概念:通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程,包括找学校(训练所需的大量计算和 GPU 等)、确定教材(大量的数据量)、找老师(算法讲述内容)、就业指导(微调)、搬砖(推导)。 2. 学习大模型的构建过程: 收集海量数据:如同教孩子成为博学多才的人需要让其阅读大量资料,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 预处理数据:像为孩子整理适合的资料,AI 研究人员要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、分割文本。 设计模型架构:为孩子设计学习计划一样,研究人员要设计大模型的“大脑”结构,如使用 Transformer 架构等特定的神经网络结构。 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复预测句子中的下一个词来逐渐学会理解和生成人类语言。 推荐资料: 1. 直播共学: 可在飞书知识库中查看以下分享内容和教程:小七姐、刘宇龙、熊猫、MQ、财猫、李继刚、凯翔、AJ、南瓜博士、江树的分享。 参与每晚群里的分享和讨论会,包括 3.4 直播聊天(讲讲大家最初入门学 prompt 的一些入门方法)、3.5 直播分享(小七姐提示词学习路径)、3.5 直播答疑(小七姐、宇龙、AJ 学习路径中的各类问题和 AGI 对应知识推荐)、3.6 直播分享(MQ:文科小白+普通宝妈的 AI 学习之路、熊猫提示词和思维模型)、3.7 直播分享(南瓜博士&财猫文理兼修话 PROMPT)、3.7 直播聊天解答作业等。 2. 文章学习: 大模型工具请大家自行准备,推荐顺序为:1.chat 2.kimi.ai 3.智谱清言 4
2025-03-23
请给出知识库中关于dify的文章和教学视频
以下是关于 Dify 的相关内容: 如何接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 小七姐相关的提示词知识库文章索引: RAG 提示工程系列(3)|迈向工程化应用中关于 Dify 的介绍: Dify 是一个开源的大模型应用开发平台,它通过结合后端即服务和 LLMOps 的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式 AI 应用。 该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词 IDE,以及一个全面的 RAG Pipeline,用于文档处理和检索。 Dify 还允许用户定义 Agent 智能体,并通过 LLMOps 功能对应用程序的性能进行持续监控和优化。 Dify 提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。 Dify 的设计理念注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实,无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都提供了相应的支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 一般地,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。
2025-03-21
我想从Nanobrowser里植入DeepSeek的R1模型,来让它帮我做网页搜索之类的工作,我该怎么做,给出详细教程
以下是从 Nanobrowser 里植入 DeepSeek 的 R1 模型来进行网页搜索的详细教程: 1. 阿里云百炼平台相关: 模型广场:百炼平台的模型广场有各种模型,包括音频理解、视频理解等,通义的一些强模型也在其中。 无需部署:百炼平台无需部署,可直接使用 Deepseek R1 模型。 价格与免费额度:Deepseek R1 模型价格与各大平台差不多,有大量免费额度,如 100 万 token,不同版本的模型如 7B、14B、32B 等也送了 100 万 token,LLAVA 限时免费。 授权与实名认证:使用 Deepseek R1 模型需要解锁和授权,没有授权按钮的需要对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 模型效果对比:在首页体验模型页面可对比不同模型的效果,如 V3 和 R1,R1 会先思考,速度较快。 多模态能力:多模态可以识别更多输入信息,如读文件、图片等,而 Deepseek R1 本身不是多模态模型。 连接 Chat Box:通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 Deepseek R1,并获取 API key。 API key 重置:可删除旧的 API key 并重新创建,方便本地软件连接。 2. 工作流创建: 创建一个对话流,命名为 r1_with_net。 开始节点,直接使用默认的。 大模型分析关键词设置:模型选择豆包通用模型lite,输入直接使用开始节点的 USER_INPUT 作为大模型的输入,系统提示词为“你是关键词提炼专家”,用户提示词为“根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索”。 bingWebSearch搜索:插件选择 BingWebSearch,参数使用上一个节点大模型分析输出的关键词作为 query 的参数,结果中 data 下的 webPages 是网页搜索结果,将在下一个节点使用。 大模型R1 参考搜索结果回答:在输入区域开启“对话历史”,模型选择韦恩 AI 专用 DeepSeek(即火山方舟里配置的 DeepSeek R1 模型),输入包括搜索结果(选择搜索节点 data 下的 webPages)和开始节点的 USER_INPUT,开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮,系统提示词不需要输入,用户提示词为空。 结束节点设置:输出变量选择大模型R1 参考搜索结果回答的输出,回答内容里直接输出:{{output}}。测试完成后,直接发布工作流。 3. 网页聊天相关: 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 打开聊天页面:点击右上角的插件列表,找到 Page Assist 插件,点击打开。 配置“DeepSeekR1”模型的 API key:基础 URL 为 https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 添加“DeepSeekR1”模型。 打开联网功能,支持联网搜索使用 R1。
2025-03-20
我想写一篇本科生论文,给出我需要的所有用于ai写论文用的指令
以下是利用 AI 写本科生论文的一些指令和步骤: 1. 确定论文主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析(若涉及):如果论文涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-03-20
一个小白,如何通过咱们这个网站来学习和应用AI,赋能工作,请给出详细的方案,
对于一个小白,通过本网站学习和应用 AI 赋能工作,可以参考以下详细方案: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、在网站中引入 AI 助手 1. 创建大模型问答应用:先通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算,来快速搭建一个网站,模拟您的企业官网或者其他站点。 3. 引入 AI 助手:接着通过修改几行代码,实现在网站中引入一个 AI 助手。 4. 增加私有知识:最后可以通过准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助您更好的应对客户咨询。 七、推荐布鲁姆分类法学习路径 应用:深入 分析:大量阅读,理解各知识之间的关系。
2025-03-16
可以给出国内出名的大语言模型的信息吗,包括其模型名称,版本,发布时间,发布公司,模型参数,性能特点等信息,尽可能覆盖更多的大模型,使用表格输出,并按照发布时间排序
|模型名称|版本|发布时间|发布公司|模型参数|性能特点|适合应用| |||||||| |Baichuan213BChat|Baichuan2192K|10月31日|百川智能|未提及|在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名200亿参数量级国内模型第一,在计算和代码能力上有一定优化空间|场景相对广泛且可以私有化部署,重点推荐在小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,可部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务| |文心一言|V4.0|10月17日|百度|未提及|在计算、逻辑推理、生成与创作、传统安全这4大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且绝大部分能力有很高的水平|能力栈较为广泛,可应用的场景较多,重点推荐在查询搜索知识应用、任务拆解规划Agent、文案写作以及代码编写及纠错等方面的应用,由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力| |通义千问 2.0|2.0|10月31日|阿里云|千亿级参数|未提及|未提及|
2025-03-15
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14