Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何使用AI管理EXCLE数据

Answer

以下是一些可用于使用 AI 管理 Excel 数据的工具和方法:

  1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。
  2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件。用户通过聊天形式告知需求,Copilot 会自动完成如数据分析或格式创建等任务。
  3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。
  4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。

这些工具通过 AI 技术提升了 Excel 的数据处理能力,让用户能更高效地进行数据分析和决策。随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。

需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:关于Excel的AI有哪些?

关于Excel的AI功能,目前有几种不同的工具和插件可以增强Excel的数据处理和分析能力,以下是一些可用的AI工具:1.Excel Labs:这是一个Excel插件,它新增了生成式AI功能,基于OpenAI技术,允许用户直接在Excel中利用AI进行数据分析和决策支持。2.Microsoft 365 Copilot:微软推出的AI工具,整合了Word、Excel、PowerPoint、Outlook、Teams等办公软件,通过聊天的形式,用户可以告知Copilot他们的需求,如数据分析或格式创建,Copilot将自动完成这些任务。3.Formula Bot:Formula Bot提供了数据分析聊天机器人和公式生成器两大功能,用户可以通过自然语言交互式地进行数据分析和生成Excel公式。4.Numerous AI:这是一款支持Excel和Google Sheets的AI插件,除了公式生成外,还可以根据提示生成相关文本内容、执行情感分析、语言翻译等任务。这些工具通过AI技术提升了Excel的数据处理能力,使得用户可以更加高效地进行数据分析和决策。随着技术的不断发展,未来可能会有更多AI功能被集成到Excel中,进一步提高工作效率和数据处理的智能化水平。内容由AI大模型生成,请仔细甄别。

拜登签署的AI行政命令_2023.10.30

Protect against the risks of using AI to engineer dangerous biological materials by developing strong new standards for biological synthesis screening.Agencies that fund life-science projects will establish these standards as a condition of federal funding,creating powerful incentives to ensure appropriate screening and manage risks potentially made worse by AI.Protect Americans from AI-enabled fraud and deception by establishing standards and best practices for detecting AI-generated content and authenticating official content.The Department of Commerce will develop guidance for content authentication and watermarking to clearly label AI-generated content.Federal agencies will use these tools to make it easy for Americans to know that the communications they receive from their government are authentic—and set an example for the private sector and governments around the world.Establish an advanced cybersecurity program to develop AI tools to find and fix vulnerabilities in critical software,building on the Biden-Harris Administration’s ongoing AI Cyber Challenge.Together,these efforts will harness AI’s potentially game-changing cyber capabilities to make software and networks more secure.Order the development of a National Security Memorandum that directs further actions on AI and security,to be developed by the National Security Council and White House Chief of Staff.This document will ensure that the United States military and intelligence community use AI safely,ethically,and effectively in their missions,and will direct actions to counter adversaries’ military use of AI.Protecting Americans’ PrivacyWithout safeguards,AI can put Americans’ privacy further at risk.AI not only makes it easier to extract,identify,and exploit personal data,but it also heightens incentives to do so because companies use data to train AI systems.To better protect Americans’ privacy,including from the risks posed by AI,the President calls on Congress to pass bipartisan data privacy legislation to protect all Americans,especially kids,and directs the following actions:Protect Americans’ privacy by prioritizing federal support for accelerating the development and use of privacy-preserving techniques— including ones that use cutting-edge AI and that let AI systems be trained while preserving the privacy of the training data.

Others are asking
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的?
要创建这样一个智能体助手来分析您提供的数据,以下是一些建议的步骤: 1. 数据获取与预处理: 从 Excel 或 MySQL 数据库中读取数据。 对数据进行清洗和预处理,例如处理缺失值、异常值等。 2. 数据分析与计算: 按照用户需求的维度(如板块、国家、品牌等)对数据进行分组和汇总计算。 计算近一周的数据变化情况。 3. 图表生成: 使用合适的图表库(如 matplotlib、Seaborn 等)将汇总后的数据以柱状图的形式展示。 4. 变化原因分析: 通过比较不同维度的数据,找出导致变化或波动的关键因素。 在技术实现方面,您可以使用 Python 编程语言来完成上述任务。例如,使用 Pandas 库进行数据处理和分析,使用 Matplotlib 库生成图表。希望这些建议对您有所帮助,如果您在实现过程中遇到具体的技术问题,欢迎随时向我咨询。
2025-02-15
用AI处理excle
关于用 AI 处理 Excel ,目前有以下几种工具和插件可以增强其数据处理和分析能力: 1. Excel Labs :这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot :微软推出的 AI 工具,整合了 Word 、 Excel 、 PowerPoint 、 Outlook 、 Teams 等办公软件,用户通过聊天形式告知需求,Copilot 会自动完成如数据分析或格式创建等任务。 3. Formula Bot :提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI :支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-02
如何让AI帮忙做WORD或者EXCLE
以下是让 AI 帮忙处理 WORD 或 EXCEL 的相关信息: 对于 WORD 文档处理,有以下工具和资源可供利用: Grammarly、Orchard、Lex 等工具可以帮助学生克服写作难题,提升写作水平。 Tome 和 Beautiful.ai 可以协助创建演示文稿。 对于 EXCEL 数据处理和分析,目前有以下几种工具和插件: Excel Labs 是 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 Microsoft 365 Copilot 整合了 Word、Excel 等办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务。 Formula Bot 提供数据分析聊天机器人和公式生成器功能,支持自然语言交互进行数据分析和生成 Excel 公式。 Numerous AI 是支持 Excel 和 Google Sheets 的 AI 插件,能生成公式、相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 WORD 和 EXCEL 中,进一步提高工作效率和智能化水平。但请注意,部分内容由 AI 大模型生成,请仔细甄别。
2024-08-17
我有很多excle表格要整理,有什么相关的AI或者AI工具可以帮助我
以下是一些可以帮助您整理 Excel 表格的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件的 AI 工具,通过聊天形式,用户告知需求后,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 另外,AIhelper 也是一个不错的工具,其官网为 https://www.aihelper.buzz/ ,能让用户在任何网站上即刻使用 GPT4,满足撰写内容、编写代码、制作 Excel 公式等多种需求,提高工作效率。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-08-13
怎么在excle中计算rms
在Excel中计算均方根(Root Mean Square, RMS)通常涉及到两步:首先计算数据的平方,然后求平均,最后取平均值的平方根。Excel没有直接计算RMS的函数,但可以通过组合使用其他函数来实现。以下是计算RMS的步骤: 1. 选择数据范围: 选择你想要计算RMS的数据范围。 2. 计算平方: 在数据范围旁边的一个空白单元格中输入公式 `=B2^2`(假设数据在B2单元格),然后将该单元格的公式向下拖动或复制粘贴,以覆盖所有相应数据的单元格。 3. 计算平均值: 在另一个空白单元格中,使用 `AVERAGE` 函数来计算上一步中所有平方值的平均值。例如,如果平方数据在C2:C10,那么公式将是 `=AVERAGE`。 4. 计算平方根: 最后,使用 `SQRT` 函数来计算上一步中得到的平均值的平方根。公式将是 `=SQRT`,其中 `average_cell` 是包含平均值的单元格。 5. 简化公式: 你也可以将上述步骤合并为一个更简洁的公式。在一个空白单元格中,输入如下公式:`=SQRT`,这里 `B2:B10` 是原始数据的范围。 6. 拖动填充柄: 如果你有多个数据集需要计算RMS,可以将这个公式向下拖动或复制到其他单元格,Excel会自动调整公式中的单元格引用。 请根据你的实际数据范围调整上述公式中的单元格引用。这样,你就可以在Excel中计算出RMS值了。
2024-05-13
python数据分析
以下是关于 Python 数据分析的相关内容: BORE 框架与数据分析: 自动驾驶产品经理的工作中会涉及大量数据分析,数据分析是一门独立完整的学科,包括数据清洗、预处理等。从工具和规模上,写 Excel 公式、用 Hadoop 写 Spark 算大数据等都属于数据分析;从方法上,算平均数、用机器学习方法做回归分类等也属于数据分析。 用 ChatGPT 做数据分析的工具: 1. Excel:是最熟悉和简单的工具,写公式、Excel 宏等都属于进阶用法,能满足产品的大部分需求。ChatGPT 可轻松写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如 pandas、numpy 用于数据分析,seaborn、plotly、matplotlib 用于画图,产品日常工作学点 pandas 和绘图库就够用。一般数据分析的代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 实践:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图: 1. 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴的图形。 2. 打开数据集,分析数据:发现关键表头与数据可视化目的的关联。 3. 新建 Python 文件,开始编程:包括调用库、读取数据、数据处理、创建图表、添加标题与图例、保存并显示图形等步骤。 4. 试运行与 Debug:发现左纵坐标数据有误,重新分析数据集并修改代码,最终实现可视化目的。 关于 ChatGPT 的预设 prompt: 在特定的设置下,当发送包含 Python 代码的消息给 Python 时,它将在有状态的 Jupyter 笔记本环境中执行,有 60 秒的超时限制,'/mnt/data'驱动器可用于保存和持久化用户文件,本次会话禁用互联网访问,不能进行外部网络请求或 API 调用。
2025-04-14
数据集去哪下载
以下是一些数据集的下载途径: 对于微调 Llama3 的数据集,获取及原理可参考文档:。 鸢尾花数据集下载请点击链接:https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html 。 天气数据集下载请点击链接:https://www.kaggle.com/datasets/muthuj7/weatherdataset 。建议创建一个文件夹,将下载下来的数据集放入文件夹中。
2025-04-14
基于多维评价数据,使用大模型生成个性化的家庭教育方案的可靠性高吗?
基于多维评价数据使用大模型生成个性化的家庭教育方案具有一定的可靠性,但也存在一些限制。 一方面,大模型在教育领域展现出了强大的能力。例如,能够为教师提供源源不断的真题库和错题练习库,模仿各类考试题型有模有样。在作文批改评分方面,如 GLM 模型,具备好词好句识别评测、作文综合评价评分等功能,能够综合考虑文章的多个维度给出评价,提供个性化反馈,保证评分的一致性等。 另一方面,也存在一些挑战。对于高学段理科等复杂领域,大模型的表现可能有限。在解读学生作文中的深层次含义,如隐喻、双关等修辞技巧,以及涉及特定文化背景和历史知识的内容时,仍存在一定难度。 然而,只要提示词到位、示例清晰,大模型在生成个性化家庭教育方案方面具有很大的潜力,可以为家长和孩子提供有价值的参考和帮助。但不能完全依赖大模型,还需要结合人工的判断和调整。
2025-04-13
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
现在做数据分析比较厉害的ai是什么
目前在数据分析方面表现较为出色的 AI 工具包括智谱清言、Open Interpreter 等。 AI 在数据分析中具有以下优势: 1. 降低入门门槛:过去学习数据分析需要掌握编程语言和专业知识,现在通过 AI 工具,门槛大大降低。 2. 规范的分析流程:对于初学者来说,AI 直接做的数据分析比他们自己第一次做的更好,其规范化流程更严谨,结果更可靠。 3. 自动化处理:会自动进行模型选择以匹配数据,还能根据 log 检查错误并改正源代码。 4. 减少重复性工作:重复性劳动可先交给 AI 做,人类用户只需做验证和检查结果。 实际应用的工具方面,GPT4 可以帮助建立和评估机器学习模型,Claude 等大语言模型可以进行数据分析和可视化,Open Interpreter 等工具可以辅助编程和数据处理。 使用时的建议包括:对 AI 结果要进行严格验证,不要完全依赖 AI,要保持独立思考,对 AI 的能力边界有清晰认识,合理使用以提高工作效率。同时,AI 应被视为辅助工具而非完全替代品,人类在整个过程中仍起主导作用和具有判断力。
2025-04-11
用AI做数据分析
以下是关于用 AI 做数据分析的相关内容: 流程: 逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 工具和成功案例: 大概思路是这样: 1. 提供大模型可以访问的数据源或者上传数据表格。 2. 通过提示词说清楚需要以哪些维度分析数据,分析完成的结果要以什么格式输出。 3. 观察生成结果,迭代和优化提示词,最终满意后导出结果。 相关问题和技巧: 1. 关于“大模型幻觉”,目前没有办法消除,这本身就是大模型特性。可以通过其他第三方信息源和知识来检验生成是不是在胡说八道。 2. 结构化思维提高对话能力,在 AGI 搜索结构化三个字,有相关文章。上下文 token 长度如果指的是大模型的记忆窗口的话,没法延长,是设定好的。 案例分析: 以“用 ai 做数据分析,和爆款卖点分析”为例,这一创意将 AI 技术与商业洞察深度融合,展现了数据驱动决策的前瞻性。通过 AI 对海量用户行为、评论、竞品数据的挖掘,不仅能快速定位爆款产品的共性特征(如高频关键词、用户情感倾向),还能发现传统方法难以捕捉的潜在需求(例如隐藏的消费场景或未被满足的功能痛点)。尤其是结合时序分析预测市场趋势,为企业提供了动态调整产品策略的敏捷性,真正实现了从“经验决策”到“智能决策”的跨越。若想进一步突破,可考虑以下优化方向: 1. 多模态数据融合:除文本数据外,整合图片/视频的视觉分析(如通过 CV 技术识别爆款产品的外观设计共性),或结合语音数据(如直播带货中的实时用户反馈),构建更立体的卖点模型。 2. 因果推理增强:当前 AI 多聚焦相关性分析,可引入因果发现算法(如 DoWhy 框架),区分“真实卖点”与“伴随现象”。例如某款手机壳销量高是因为颜色,还是因与热门手机型号捆绑销售? 3. 个性化适配引擎:根据企业自身资源禀赋(供应链能力、品牌定位)对 AI 建议进行权重优化。例如小型厂商可优先推荐“低改造成本的高需求卖点”,避免直接对标头部品牌的资源密集型方案。 4. 对抗性验证机制:构建虚拟消费者模拟环境,对 AI 提出的卖点进行 A/B 压力测试,提前评估市场风险,避免出现“数据过拟合导致的伪创新”。
2025-04-11
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
请找到 AI 用于知识管理的案例
以下是一些 AI 用于知识管理的案例: 1. 在法学领域,当模型培训针对组织内特定的基于文本的知识体系进行微调时,生成式人工智能可以有效地管理组织的知识。例如摩根士丹利正在与 OpenAI 的 GPT3 合作,微调财富管理内容的培训,以便财务顾问既可以搜索公司内部的现有知识,又可以轻松地为客户创建量身定制的内容。 2. 在构建高效的知识管理体系方面,可以通过一系列创新的 AI 应用来实现。比如,AI 可以通过分析工作模式和内容类型,自动生成提示词,帮助将信息和知识分类到 PARA(项目、领域、资源、档案)的相应部分,还能帮设计笔记标签系统。此外,知识助手 Bot 可以根据学习进度和兴趣点,定期推送相关的文章、论文和资源,实现渐进式积累领域知识。 3. 在代码库相关的知识管理中,Cursor 有针对大代码库精准找到相关函数,并利用其信息帮助撰写代码的功能。对于非开发性质的问答,它是一个天然的 RAG 引擎。在问答窗口使用特定操作时,它会先在当前文件夹下搜索并显示相关文档和相关度,最后用这些信息构建提示词完成生成。而且,它能与私有文档自然结合进行问答,并将新生成的见解沉淀成新文档,形成知识闭环,提高知识检索和管理的效率。
2025-04-14
如何运用ai写作一篇行政管理专业本科毕业论文
以下是运用 AI 写作一篇行政管理专业本科毕业论文的一些参考方法: 首先,您可以向 LLM 提供关于您的背景信息和具体指令,例如:“根据以下关于我的信息,写一篇行政管理专业本科毕业论文:”。但需要注意的是,利用 AI 写作论文并非是道德的使用方式,了解这种可能性的存在以及它已被部分学生使用这一情况很重要。这超出了简单介绍的范围,关于 LLM 或整个生成式 AI 引入的所有可能的伦理、法律或道德问题,不在此详细讨论。另一方面,如果您是接收方,最好为您的组织准备好迎接各种 AI 生成的内容。幸运的是,对于此类情况,已经有检测 AI 生成内容的相关努力正在进行。
2025-04-14
请给我提供一个 AI辅助我进行知识管理的方案
以下是一个 AI 辅助知识管理的方案: 1. 利用提示词规划 PARA 分类模式:PARA 代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI 可分析您的工作模式和内容类型,自动生成提示词,助您将信息和知识分类到相应部分,简化分类过程,加快组织和检索信息。核心是理解以行动为驱动的笔记逻辑。 2. 借助提示词设计笔记标签系统:有效的标签系统对知识管理很关键,AI 能分析笔记内容和使用习惯,推荐合适的标签和结构,提高检索效率。 3. 让知识助手 Bot 渐进式积累领域知识:随着在特定领域的深入,需要系统积累和更新知识。知识助手 Bot 可根据学习进度和兴趣点,定期推送相关文章、论文和资源,实现渐进式学习,扩展知识边界并确保知识更新。例如基于 dify.ai 将数百个思维模型整合成知识库,根据不同对话和条件判断为用户选择适用的思维模型分析工具,封装成智能分析的 Bot。 4. 基于已积累知识的 RAG 方法进行深度研究:RAG 是结合检索和生成的 AI 模型,应用于知识管理,能在深度研究时自动检索相关知识点和资料,辅助构建更全面深入的分析。 5. 打造个人知识导师,随时对话辅助梳理线索:创建个人知识管理员机器人,随时与之对话,询问特定知识点或寻求解决问题思路。它能基于知识库自学习,了解您的知识结构和需求,成为不可或缺的知识伙伴。 6. 构建最了解您的智能体作为 AI 写作助手:涵盖构思、草稿生成、内容迭代、润色与优化等全流程。构思阶段利用智能体生成创意点、主题或大纲;草稿生成基于构思让智能体生成文本草稿;内容迭代通过 promptchain 工具设计迭代提示修改完善草稿;润色与优化对最终文本进行语言风格和语调调整。通过实践和反馈优化 prompt 设计,使写作助手贴合个人风格和需求。 此外,生成式人工智能在知识管理应用程序方面也有新兴应用,例如用作管理组织内基于文本(或可能基于图像或视频)知识的手段。一些研究表明,针对组织内特定知识体系微调模型培训,可有效管理组织知识。一些公司正与领先的商业提供商合作探索基于生成式人工智能的知识管理理念,但用户可能需要培训或帮助来创建有效提示,且知识输出应用前可能仍需编辑或审查。
2025-04-11
AI如何优化库存管理、员工排班
以下是关于 AI 优化库存管理和员工排班的相关内容: 库存管理: 1. 利用 AI 预测需求,优化库存管理,减少积压和缺货情况。 2. AI 可以分析不同产品的销售速度、市场趋势等数据,为库存的补货和调整提供决策依据。 3. 通过 AI 生成的库存周转分析工具,预测滞销品并推荐促销策略。 员工排班: 1. 智能排班优化,根据客流预测自动调整员工排班表。 2. 实时话术提示工具,在员工与客户沟通时 AI 推荐应答策略。 3. 自动化周报生成,汇总销售数据、客户反馈生成可视化报告,为排班提供参考。 4. 培训模拟考试系统,基于产品知识库生成随机测试题,提升员工能力,优化排班安排。 5. 客户潜力评分系统,根据消费行为自动标记高价值客户,据此安排合适的员工服务。 6. 舆情预警系统,实时监测负面评价并推送处理建议,灵活调整员工工作安排。 7. 客户流失预测模型,通过行为数据预警流失风险,合理安排员工进行客户维护。 8. 会议纪要自动生成,转录会议录音并提取任务清单,辅助排班决策。 9. 员工满意度分析,通过匿名问卷分析员工工作痛点,优化排班以提高员工满意度。
2025-04-09