Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我给你设计一个有机化学结构式,你能找出合成路线吗

Answer

目前的技术可以帮助您找出化学结构式的合成路线。例如,像“Coscientist”这样的人工智能系统,当被问及能否合成某个分子时,它会首先在互联网上搜索相关的合成路线,然后根据搜索结果制定实验协议,接着将实验协议写成代码以指导自动化实验设备,最后由机器人执行实验任务。这个过程是可迭代的,能够根据实验结果调整协议以改进实验并实现预期目标。

另外,在一些研究中也提到,解决诸如寻找化学合成途径等问题遵循一定的模式,虽然在实际情况中相关的可能性图可能非常庞大,但可以通过一些常见的方法来应对挑战,比如为不同的可能状态或结果分配分数,只追求得分较高的路径;在自动定理证明中,也有从初始命题向下和从最终定理向上工作,试图找到中间的交汇路径等方法。同时,如果已经确定了从 X 到 Y 存在路径的“引理”,可以将 X → Y 作为新规则添加到规则集合中。

Content generated by AI large model, please carefully verify (powered by aily)

References

沃尔夫勒姆:人工智能能解决科学问题吗?

There are many kinds of problems that follow this same general pattern.Finding a winning sequence of plays in a game graph.Finding the solution to a puzzle as a sequence of moves through a graph of possibilities.Finding a proof of a theorem given certain axioms.Finding a chemical synthesis pathway given certain basic reactions.And in general solving a multitude of NP problems in which many “nondeterministic” paths of computation are possible.有许多种问题都遵循同样的一般模式。在游戏图中找到获胜的游戏序列。通过可能性图的一系列移动来寻找谜题的解决方案。在给定某些公理的情况下找到定理的证明。在给定某些基本反应的情况下寻找化学合成途径。一般来说,解决大量NP问题,其中许多“非确定性”计算路径都是可能的。In the very simple example above,we’re readily able to explicitly generate a whole multiway graph.But in most practical examples,the graph would be astronomically too large.So the challenge is typically to suss out what moves to make without tracing the whole graph of possibilities.One common approach is to try to find a way to assign a score to different possible states or outcomes,and to pursue only paths with(say)the highest scores.In automated theorem proving it’s also common to work “downward from initial propositions” and “upward from final theorems”,trying to see where the paths meet in the middle.And there’s also another important idea:if one has established the “lemma” that there’s a path from X to Y,one can add X → Y as a new rule in the collection of rules.

化学:使用大型语言模型进行自主化学研究

这部分列出了为了验证代理(可能是指自动化系统或软件代理)而执行的实验,以及在线搜索有机合成的过程。还包括执行交叉偶联反应和优化反应条件的步骤。

化学:使用大型语言模型进行自主化学研究

原创xiaoming乐谷说2023-12-23 23:00文章地址:https://www.nature.com/articles/s41586-023-06792-0nature前几天发来王炸,论文标题《Autonomous chemical research with large language models》,趁着周末读了一下。图里的意思大概可以这么理解。这张图片展示了一个名为“Coscientist”的人工智能系统的工作流程图,该系统用于自动化化学研究。图中描述了从一个简单的人类提示开始,到实验结束的整个过程。具体步骤包括:文献搜索(Literature search):当被问及是否能合成某个分子A时,Coscientist首先会在互联网上搜索相关的合成路线。协议选择(Protocol selection):接着,Coscientist会根据搜索结果制定实验协议。翻译成代码(Translation into code):然后,Coscientist会将实验协议写成代码,以指导自动化实验设备。实验(Experiment):最后,机器人根据代码执行实验任务。这个过程是可迭代的,意味着Coscientist可以根据实验结果调整协议,以改进实验并实现预期目标。这个系统利用大型语言模型来规划和实施化学任务,展示了人工智能在化学研究中的应用潜力。价值在于:

Others are asking
设计有机化学分子软件有哪些
目前常见的设计有机化学分子的软件有 Gaussian、Schrödinger、ChemDraw 等。Gaussian 是一款功能强大的量子化学计算软件;Schrödinger 提供了一系列用于药物设计和分子模拟的工具;ChemDraw 则常用于绘制和编辑化学结构。
2024-08-30
帮我找出现在成熟的人工智能大模型,列举他们的功能,附上打开链接
以下是一些成熟的人工智能大模型及其功能和链接: 百度(文心一言):https://wenxin.baidu.com 。 抖音(云雀大模型):https://www.doubao.com 。 智谱 AI(GLM 大模型):https://chatglm.cn 。 中科院(紫东太初大模型):https://xihe.mindspore.cn 。 百川智能(百川大模型):https://www.baichuanai.com/ 。 商汤(日日新大模型):https://www.sensetime.com/ 。 MiniMax(ABAB 大模型):https://api.minimax.chat 。 上海人工智能实验室(书生通用大模型):https://internai.org.cn 。 在这些大模型中: 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 。 目前不能进行自然语言交流的:昇思、书生 。 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 。 特色功能:昇思——生图,MiniMax——语音合成 。 此外,还有其他一些大模型: OpenAI 系统:包括 3.5 和 4.0 版本,一个新的变种使用插件连接到互联网和其他应用程序。Code Interpreter 是一个非常强大的 ChatGPT 版本,可以运行 Python 程序。如果未为 OpenAI 付费,只能使用 3.5 。除了插件变种和一个暂时停用的带有浏览功能的 GPT4 版本之外,这些模型都没有连接到互联网。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,例如可以创建和查看图像,且可以在网页浏览器中阅读文档,并连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 Anthropic:发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口,本质上是 LLM 的记忆。Claude 几乎可以保存一整本书或许多 PDF,与其他大型语言模型相比,它不太可能恶意行事。
2025-03-03
请帮我找出在课堂可以使用的AI
以下是在课堂中可以使用的一些 AI 应用和方法: 1. 让 AI 出题,如出 Python 题,可先出 20 道再挑选修改。 2. 利用 AI 进行智慧课程设计,例如围绕巴以冲突出相关数学题,将维基百科的史料借助 AI 变成数学课教案,让孩子从生活中学习多学科知识。 3. 输入书上例题,让 AI 生成新颖解法,引发学生思考。 4. 进行交互式学习,随时要求 AI 解释关键代码并举例,为学生提供支架。 5. 利用 AI 分担低阶认知,让人有精力投入高阶认知加工。 6. 借助 AI 工具,将知识作为解决问题的方法来教。 7. 声音克隆:可在 Elevenlabs.io、speechify.com 等网站进行,还能通过 HeyGen 定制“数字分身”。 8. 视频生成:如用 runway 让互联网梗图动起来,用 lumalabs.ai 让图片动起来。 同时要注意对学生思维训练的引导,关注和设法引导“偷懒”的学生,避免差距拉大。
2025-02-16
怎样利用自己现有的培训文档,制作一个AI agent可以担任系统分析员的工作,从文档中抽丝剥茧找出系统问题的根本原因和解决方案?
目前没有相关的培训文档内容可参考。但一般来说,要利用现有的培训文档制作一个能担任系统分析员工作的 AI agent 并从文档中找出系统问题的根本原因和解决方案,您可以考虑以下步骤: 1. 对培训文档进行详细的梳理和分类,提取关键信息,例如系统常见问题的特征、根本原因的类型以及可能的解决方案模式。 2. 利用自然语言处理技术,对提取的信息进行标注和训练,使 AI agent 能够理解和识别这些模式。 3. 设计有效的交互方式,让用户能够向 AI agent 清晰地描述系统问题,以便它能够准确地匹配和应用所学知识。 4. 不断测试和优化 AI agent 的性能,根据实际应用中的反馈,调整训练数据和算法,提高其准确性和实用性。
2025-01-10
最近AGI机器人特别火,请帮我找出相关新闻
以下是一些与 AGI 机器人相关的新闻: :随着 OpenAI 聊天机器人 ChatGPT 的热潮持续,探讨其如何帮助创建用户体验调查问卷或其他调查问卷。 :给 25 个 AI 代理人动机和记忆,并将它们放在模拟城镇中,其行为被评价比人类角色扮演更“人类化”。 :ChemCrow 是一个 LLM 化学代理,能在合成、药物发现和材料设计等领域执行任务,并集成 13 个专家设计的工具以增强性能。 :OpenAI 发布 GPT4 被证明是生成 AI 的一小步,对 AGI 而言是一大步,自 2022 年 11 月发布以来吸引众多用户和媒体关注,此工作是对 ChatGPT 的首次全面审查。 :有人让 AutoGPT 查找最近一个月的开源相关新闻并汇总成 word 文件,还有人在相关项目基础上做了改进和增强的新项目,如 TeenageAGI、BabyAGIasi、TypeScript 版本的 AutoGPT 等。 :特斯拉训练机器人“Optimus”抓取物体,通过人类示范学习。还提到当训练比 GPT4 大 100 倍的模型时在图像识别、生成图像和视频等方面的预测。
2024-11-10
我想用好电商人的ai从中找出自己的一份创业之路
以下是一些与电商相关的 AI 创业案例和方向,或许能为您的创业之路提供参考: 1. 创业:从零开始创立公司 给大家带来绝佳的 Prompt 以及用 ChatGPT 创立完整 SaaS 公司的流程。 详情可前往: 入库时间:2023/11/13 2. 课程:如何做一门课程 涵盖市场调研、在线网络课程、教学平台、社交媒体营销、子主题、细分领域、课程大纲、章节、推广渠道、课程脚本、文案基本要素、案例、具体方法等方面。 详情可前往: 入库时间:2023/11/13 3. 电商:带货本地生活 AI 数字人上岗,带货本地生活电商,一个月多赚 3 万。 详情可前往: 入库时间:2023/11/13 4. 电商:婴儿的四维彩超 AI 预测 大白话就是通过 AI 工具,提前把宝宝的四维彩超还原出现实中模样进行变现。 详情可前往: 入库时间:2023/11/13 5. 电商:小红书 AI 绘画变现 Ai 绘画火了好几个月了,目前变现的方式很多,分享小红书最火的三种 ai 绘画类的商品。 详情可前往: 入库时间:2023/11/13
2024-10-31
找出剧本大师这篇prompt
以下是为您找到的与“剧本大师”相关的 prompt 内容: 编剧:?根据主题创作一个包含故事背景、人物以及对话的剧本。||我要你当编剧。您将为一部长篇电影或可以吸引观众的网络系列开发引人入胜且富有创意的脚本。首先想出有趣的角色,故事的设置,角色之间的对话等。一旦你的角色发展完成创建一个令人兴奋的故事情节,充满曲折,让观众保持悬念,直到最后。我的第一个要求是“剧本主题” 影评人:?我希望你是影评人,从情节、表演、摄影、导演、音乐等方面评论电影{电影名}||我希望你扮演影评人的角色。您将需要观看电影并以清晰的方式对其进行评论,提供有关情节、表演、摄影、导演、音乐等的正面和负面反馈。我的第一个建议请求是“电影评论角度”
2024-09-04
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
我想要系统学习ai大模型应用开发,能帮我制定一个系统学习路线吗?
以下是一个系统学习 AI 大模型应用开发的学习路线: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 研读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 7. 参与相关社区交流和项目实践: 总的来说,AI 大模型应用开发是一个多学科、系统性的领域,需要深入的理论学习和工程实践经验相结合。除了学习基础知识,熟练使用开源框架工具也很关键。保持对前沿动态的跟踪,并实际参与相关项目是获得真知灼见的最佳途径。 此外,以下是一个利用 AI+SMART 安排学习计划的案例: 学习目标与个人或职业发展目标的关系:平时工作中需要经常阅读英文文档。另外,有朋友和客户是英文母语者,想要和他们沟通更加顺畅。其次,希望未来有机会进入大型外企工作。 具体学习内容:首先是词汇需要提高,其次听力、口语、阅读和写作这些方面都进行全面提高。 量化学习进度和成功:以考取雅思 8.0,且可以和朋友或客户流利的交谈为目标。 时间框架:半年内。 现实可行性:目前雅思 6.5,每天可以投入 2 小时。周末可以更多。有访问网络课程的条件,也可以购买书籍或其他学习材料。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-08
我已经有了论文大纲,需要生成技术路线图,哪个AI可以实现
以下是一些可以帮助您生成技术路线图的 AI 工具和方法: 1. 利用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 2. 使用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 3. 对于生成“延伸思考”的问题,可以让 AI 根据特定的参照(比如之前的产出或是新增的参考文案)输出具备更高关联度的内容。 4. 可以用同一段提示词对比不同模型的输出,择优深挖。 5. 在满意的内容节点上添加“文本编辑器显示”,对文本进行精加工。 6. 先确定整个调研报告的大纲目录,例如通过手机识别示例报告的目录截图。 7. 让 AI 总结语言风格,如将范文交给 Claude 2 总结语言风格。 8. 让 GPT4 按照目录逐步生成章节内容,设置循环结构,根据情况决定是否调用 webpolit 插件查询相关信息。 9. 在需要搜索网络信息的章节处打上标签,让 GPT4 自主搜索信息再来生成内容。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行相关工作时,应保持批判性思维,并确保成果的质量和学术诚信。
2025-04-08
AI学习路线
以下是为新手提供的 AI 学习路线: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-30
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
想学习AI的路线应该是什么样的
以下是新手学习 AI 的路线: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-03-19