Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

中国头部的大模型公司有哪些?

Answer

以下是中国头部的大模型公司:

  • 北京:
    • 百度(文心一言):https://wenxin.baidu.com
    • 抖音(云雀大模型):https://www.doubao.com
    • 智谱 AI(GLM 大模型):https://chatglm.cn
    • 中科院(紫东太初大模型):https://xihe.mindspore.cn
    • 百川智能(百川大模型):https://www.baichuan-ai.com/
  • 上海:
    • 商汤(日日新大模型):https://www.sensetime.com/
    • MiniMax(ABAB 大模型):https://api.minimax.chat
    • 上海人工智能实验室(书生通用大模型):https://intern-ai.org.cn

此外,字节和腾讯都有团队在和外部大模型合作。创业公司中表现出色的有:

  • 智谱:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。
  • MiniMax:推出了 MoE 架构的新模型,和“星野”这个目前国内最成功的 AI 陪聊 APP。
  • 月之暗面:专注长 Token 能力,在记忆力和长 Token 能力上可圈可点。

通过 SuperCLUE 测评结果发现,国内大模型的第一梯队还有文心一言 4.0、通义千问 2.0 引领研发进度。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。

Content generated by AI large model, please carefully verify (powered by aily)

References

8月正式上线的国内大模型

5⃣️五家北京企业机构:百度(文心一言)https://wenxin.baidu.com抖音(云雀大模型)https://www.doubao.com智谱AI(GLM大模型)https://chatglm.cn中科院(紫东太初大模型)https://xihe.mindspore.cn百川智能(百川大模型)https://www.baichuan-ai.com/3⃣️三家上海企业机构:商汤(日日新大模型)https://www.sensetime.com/MiniMax(ABAB大模型)https://api.minimax.chat上海人工智能实验室(书生通用大模型)https://intern-ai.org.cn今天这8个大模型,在聊天状态下——能生成Markdown格式的:智谱清言、商量Sensechat、MiniMax目前不能进行自然语言交流的:昇思(可以对文本进行是否由AI生成的检测,类似论文查重,准确度不错)、书生受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有15元的预充值额度进行体验,完成企业认证后可以进行充值)特色功能:昇思——生图,MiniMax——语音合成

AGI万字长文(上)| 2023回顾与反思

另外,字节和腾讯都有团队在和外部大模型合作,很多外服务和产品也不是用的自己的模型。创业公司。目前明确看到有好模型、好产品的第一梯队公司大概如下:智谱:一年间推出了4代GLM,一直是国内能力最好的模型之一MiniMax:推出了MoE架构的新模型,和”星野“这个目前国内最成功的AI陪聊APP月之暗面:专注长Token能力,在记忆力和长Token能力上可圈可点

2023年度中文大模型基准测评报告.pdf

[title]VIRTUAL中文大模型基准测评2023年度报告[heading2]国内外大模型总体表现[heading3]国内大模型竞争格局国内大模型综合表现-SuperCLUE通过SuperCLUE测评结果发现,国内大模型的第一梯队有了更多新的模型加入。头部模型如文心一言4.0、通义千问2.0引领国内大模型的研发进度,部分高质量大模型紧追不舍,分别在闭源应用和开源生态中形成自己独特的优势。创业公司(9)vs大厂(10)创业公司大厂•从国内TOP19大模型的数量来看,创业公司和大厂的占比几乎持平。大厂和创业公司平均成绩对比

Others are asking
国内的头部和腰部AI公司有哪些
以下是国内部分头部和腰部的 AI 公司及其相关产品: 科大讯飞:讯飞听见 网易:有道翻译 字节跳动:即梦 AI、幕布、火山方舟 昆仑万维:天工 AI 美图公司:Vmake AI、美图设计室 迷南文化:熊猫办公 稿定科技:稿定设计 云上绿洲:FlowUs 华为:昇思 MindSpore 良知品牌:openi 艺源酷科技:创客贴 AI 金山办公:WPS AI 艾斯莱德:islide.cc 月之暗面:Kimi.ai
2025-03-26
再来几个头部ai公众号
以下是一些头部的 AI 公众号: 超时空视角 赛博禅心 302.AI 产研负责人(产品官网:https://302.ai ) 01Founder(小红书:2205271258,公众号:01Founder,即刻:Max_means_best,微信:Max_Deze) 和 AI 一起进化(公众号:kaixindelele) 星际码仔(公众号:星际码仔) AI 大同学(微抖红手:AI 大同学,2 年老站能不更新就不更新:https://openai.mbmzone.com/mbmgpt/ ) PlayWithAI(小红书:PlayWithAI) 少女的 AI 大冒险(公众号:少女的 AI 大冒险)
2025-02-20
国内头部的AI产品有哪些
国内头部的 AI 产品包括以下这些: 在 APP 端:夸克和豆包的历史总下载量已过亿。单月新增方面,夸克、豆包和 Kimi 智能助手月增长可达到千万级。DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万。用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端:月总访问量超千万的产品包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,夸克、Notion 和百度文库的 MAU 超过千万。 在生成 Logo 方面的 AI 产品有: Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 Designhill:Logo 制作器使用 AI 技术创建个性化 Logo 设计。 LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据用户输入生成设计方案。 标小智:中文 AI Logo 设计工具,利用人工智能技术创建个性化 Logo。 此外,还有一些其他的 AI 产品,如 GPTs 用对话引导获取用户信息,Jasper 拆解场景流程按步骤收集信息,Leonardo 用画布和实时反馈加速 Prompt 提升,Novel 用交互式、渐进式续写,c.ai 卷生态卷模型,筑梦岛探索更多场景的对话玩法,FlowGPT 以 Prompt 的分享为核心,小悟空数据驱动优化 Prompt 等。这些产品致力于以更低的门槛帮助用户获得更高质量的 Prompt,从而更好地驱动模型。但当前阶段的 AI 产品还普遍体现出初级产品化、强行产品化的特征。
2025-02-03
AI教育头部产品
以下是 4 月、6 月的 AI 教育头部产品相关数据: 4 月访问量排名: 1. QChat,分类为教育,访问量 14220 万,相对 3 月变化 0.068 2. CheggMate,教育,4906 万,0.042 3. Khanmigo,教育,4570 万,0.015 4. Brainly:AI Homework Helper,教育,3102 万,0.023 5. Turnitin,教育,1677 万,0.149 6. WolframAlpha,教育,983 万,0.054 7. gauthmath,教育,656 万,0.558 8. Socratic by Google,教育,467 万,0.037 9. Aistote,教育,321 万,0.207 10. PTE APEUni,教育,321 万,0.198 6 月访问量排名: 1. QChat,教育,8482 万,0.293 2. Duolingo,教育,7595 万,0.049 3. Khanmigo,教育,3994 万,0.135 4. 微软 Copliot,教育,3258 万,0.174 5. CheggMate,教育,2340 万,0.285 6. Preply,教育,2069 万,0.037 7. Brainly:AI Homework Helper,教育,1984 万,0.267 8. Course Hero,教育,1730 万,0.311 9. Mathway,教育,1564 万,0.319 10. Turnitin,教育,1156 万,0.293 6 月语言教育类 APP 下载量排名: 1. Duolingo,语言教育,14955 千,0.155 2. Buddy Al,语言教育,1343 千,0.049 3. Praktika,语言教育,1252 千,0.019 4. Quizlet,语言教育,1073 千,0.036 5. Mondly,语言教育,393 千,0.324 6. Speak,语言教育,298 千,0.045 7. Stimuler,语言教育,294 千,0.02 8. Preply,语言教育,293 千,0.206 9. TalkAI 练口语,语言教育,201 千,0.047 10. Pimsleur,语言教育,148 千,0.173 11. 流利说,语言教育,123 千,0.054 12. SuperChinese,语言教育,122 千,0.164 13. Animal Jam,语言教育,89 千,0.226 14. Mikan,语言教育,70 千,0.103 15. talkpal,语言教育,60 千,0.032 16. LOLA Speak,语言教育,53 千,0.485 17. Abceed,语言教育,52 千,0.088
2024-12-02
我想通过AI帮我找工作,首先我想要了解当前存在哪些行业?这些行业下面的各自有哪5家头部企业?
目前存在众多行业,以下为您列举部分常见行业及其头部企业(排名不分先后): 1. 互联网行业:阿里巴巴、腾讯、百度、字节跳动、京东。 2. 金融行业:中国工商银行、中国建设银行、中国农业银行、中国银行、交通银行。 3. 制造业:华为、海尔、格力、美的、三一重工。 4. 医疗行业:恒瑞医药、迈瑞医疗、药明康德、复星医药、云南白药。 5. 能源行业:中国石油、中国石化、国家电网、中国海油、中国神华。 需要注意的是,行业的划分和头部企业的认定会随着市场变化而有所不同。您可以根据自身的专业和兴趣,进一步利用 AI 工具深入了解特定行业和企业的招聘信息。
2024-09-29
中国头部的大模型公司分别是哪几家?
以下是中国头部的大模型公司: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,字节和腾讯都有团队在和外部大模型合作。创业公司中表现出色的有: 智谱:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。 MiniMax:推出了 MoE 架构的新模型,和“星野”这个目前国内最成功的 AI 陪聊 APP。 月之暗面:专注长 Token 能力,在记忆力和长 Token 能力上可圈可点。 通过 SuperCLUE 测评结果发现,文心一言 4.0、通义千问 2.0 引领国内大模型的研发进度,部分高质量大模型也在闭源应用和开源生态中形成自己独特的优势。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2024-09-05
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
runway的开发公司
Runway 是由一家总部位于旧金山的 AI 创业公司开发的。其在 2023 年初推出的 Gen2 代表了当前 AI 视频领域最前沿的模型。目前 Runway 支持在网页(https://runwayml.com/ )、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105s 视频),iOS 则有 200 多,两端额度貌似并不同步。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
运用ai,生成每日自动推送到飞书消息的 公司文化日报,包含日历 天气 新闻 内部规划 事项
要运用 AI 生成每日自动推送到飞书消息的公司文化日报,包含日历、天气、新闻、内部规划和事项,您可以考虑以下步骤: 首先,需要确定获取日历、天气、新闻、内部规划和事项等信息的数据源。对于日历,可以使用在线日历服务的 API 来获取相关数据;天气信息可以从专业的气象数据提供商获取;新闻可以通过新闻聚合 API 或者与特定的新闻机构合作获取;内部规划和事项则需要从公司内部的管理系统或数据库中提取。 然后,选择适合的 AI 技术和工具。例如,可以使用自然语言处理技术来对获取到的数据进行处理和整合,生成易于阅读和理解的文本内容。 在生成日报的过程中,要注意格式的规范和统一,使其具有良好的可读性。同时,可以根据公司的文化特点和需求,对内容进行个性化的定制和优化。 另外,为了确保推送的准确性和及时性,需要建立有效的监控和反馈机制,及时发现并解决可能出现的问题。 希望以上建议对您有所帮助。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
中国AI投资逻辑
中国 AI 投资存在以下逻辑: 1. 大规模算力投资:会使公司转变为重资产模式,在瞬息万变的科技市场中可能对公司估值产生不利影响,进而影响投资人收益。获取和使用高性能算力成本高昂,是重大决策。 2. 投资圈现象:许多投资人给大模型创业者看似矛盾的策略,如招募名校人才、组织产品发布会、推出产品、进行下一轮融资,但避免购买算力。多数创业公司选择规避算力风险抬高估值,这可能成为突破的绊脚石,类似荷兰郁金香泡沫,当风口过去,真实收入将成关键。 3. 行业趋势:2024 年,AI 仍是最强吸金赛道。国内 AI 行业融资总金额增加但事件数下降,马太效应明显,资本更青睐热点和高成熟度赛道。智能驾驶在细分赛道中表现突出,AI+教育、游戏、医疗等赛道投资总额增长。政策方面,政府积极推进,国家队频繁出手投资。 4. 发展历程:OpenAI 坚持大模型方向成功,前瞻性投资算力为其奠定基础,其成功是战略眼光和长期投入的结果,背后是惊人的资源调动。中国企业工程优化能力强,人们对国内大模型快速应用充满期待。
2025-03-27
目前中国市面上什么好用的AI工具
以下是中国市面上一些好用的 AI 工具: 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ 。写作猫是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ 。是得力的智能写作助手,支持多种文体写作,能一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ 。智能创作助手,探索提升写作者效率和创作体验。 更多 AI 写作类工具可查看:https://www.waytoagi.com/sites/category/2 。 图生图产品: Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感。 Retrato:将图片转换为非凡肖像,有 500 多种风格选择。 Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:将上传照片转换为芭比风格。 图像类产品: 可灵:由快手团队开发,用于生成高质量图像和视频,图像质量高,但价格相对较高,有不同收费档次。 通义万相:在中文理解和处理方面出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,目前免费,每天签到获取灵感值即可,但存在一些局限性,如某些类型图像无法生成,处理非中文或国际化内容可能不够出色,处理多元文化内容可能存在偏差。
2025-03-26
在哪里能查到中国ai相关行业公司统计
以下是一些可以查询中国 AI 相关行业公司统计的网站: 1. ,其中包含中国 AI 公司在注意力、覆盖力等方面的统计。 2. ,涵盖中国 AI 公司、产品在注意力、覆盖力等方面的统计。 3. ,有中国 AI 公司在注意力、覆盖力等方面的统计。
2025-03-26
请介绍一下中国AI发展历史
中国 AI 的发展历史可以追溯到二十世纪中叶。 最初,AI 领域的符号推理较为流行,也取得了一些重要进展,如专家系统。但由于从专家提取知识并以计算机可读形式表现和保持知识库准确性的任务复杂且成本高,20 世纪 70 年代出现了“人工智能寒冬”。 对于大众来说,对 AI 领域的使用在近 20 年随着国内互联网的发展才开始普及。最初的应用主要是基于 NLP 技术的聊天机器人和客服机器人。随后,中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中的应用广泛,如语音助手、智能翻译设备、人脸识别支付系统等。但此前这些技术突破大多限于特定领域,模型应用范围相对狭窄。 近年来,随着计算资源变得更便宜、可用数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。在过去十年中,“人工智能”一词常被用作“神经网络”的同义词。 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT ,引发全球 AI 浪潮。AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续神经网络奠定基础。1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出并确立为一门学科。此后近 70 年,AI 的发展起起落落。
2025-03-18
我想知道现在中国网络环境内可以用的最好图片AI,以图生图稳定
目前在中国网络环境内可用的较好的以图生图且较为稳定的 AI 产品有: 1. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,可将图片转换为非凡肖像,有 500 多种风格可选,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果出色。 此外,关于 Stable Diffusion 还有一些相关的使用技巧和处理步骤: 用 GFPGAN 算法将人脸变清晰,可参考文章。 将图片发送到图生图中,打开 stableSR 脚本放大两倍,该放大插件是所有插件中对原图还原最精准、重绘效果最好的,可参考文章。 使用 Stable Diffusion 中的【X/Y/Z plot】脚本做参数对比,如设置 X 轴为提示词相关性,Y 轴为重绘幅度等。绘图时可通过增加提示词、使用画笔工具等进行局部修改和重绘。
2025-03-12