Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI在医药领域有哪些潜力

Answer

AI 在医药领域具有巨大的潜力,主要体现在以下几个方面:

  1. 疾病的诊断与预测:通过对医疗前期的图像诊断、基因组学和精准医疗等方面的分析,提高诊断的准确性和预测疾病的发展趋势。
  2. 药物研发:例如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin,AI 先通过训练集学习分子特点,总结规律,再从大量分子中识别出有效分子,最终经过实验证明其有效性。
  3. 个性化医疗:根据患者的个体特征制定专属的医疗方案。
  4. 医疗药品零售领域:
    • 药品推荐系统:利用机器学习算法分析用户数据,为用户推荐合适的非处方药品和保健品。
    • 药品库存管理:通过分析多种因素预测药品需求量,优化库存管理策略。
    • 药品识别与查询:借助计算机视觉技术,用户可通过拍摄药品图像获取相关信息。
    • 客户服务智能助手:基于自然语言处理技术回答顾客常见问题。
    • 药店运营分析:分析大数据发现潜在问题和优化空间。
    • 药品质量监控:利用机器视觉等技术检测药品包装等是否合格。
    • 药品防伪追溯:利用区块链等技术实现全流程药品溯源。
  5. 生物制药和医疗保健产业化:应用于从药物设计和诊断,到医疗服务交付和后台运营功能的方方面面,实现专业知识的快速复制和扩展,以及生物技术的大规模扩展。
Content generated by AI large model, please carefully verify (powered by aily)

References

开发:AI应用大模型商业化落地现状与思考

首先来看医疗行业,这是关乎每个人生命健康的重要领域。大模型在医疗行业的应用主要涵盖三个方向:疾病的诊断与预测、药物研发以及个性化医疗。从医疗前期的图像诊断,基因组学和精准医疗到药物研发阶段再到最后病人的个性化医疗,人工智能都有其适合的应用场景。例如,在2020年,麻省理工学院利用AI发现了一种名为Halicin的新型广谱抗生素,它不仅能有效杀灭对现有抗生素产生耐药性的细菌,而且不会使细菌产生新的耐药性。这一突破性发现源于AI的助力。研究者先搞了一个由两千个性能已知的分子组成的训练集,这些分子都被标记好了是不是可以抑制细菌生长,用它们去训练AI。AI自己学习这些分子都有什么特点,总结了一套“什么样的分子能抗菌”的规律。之后又对美国FDA已通过的六万多个分子中进行分析,最终成功识别出了一个符合所有要求的分子,这就是Halicin。之后研究者开始做实验证明,它真的非常好使,大概很快就会用于临床,造福人类。这个例子充分展示了AI大模型在医疗领域的巨大潜力,目前很多医疗研究机构都进行医疗大模型的开发研究,大模型在医疗领域大有可为!

问:AI在医疗药品零售领域的应用

AI在医疗药品零售领域有着多方面的应用前景:1.药品推荐系统利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。1.药品库存管理通过分析历史销售数据、天气、疫情等因素,AI系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。1.药品识别与查询借助计算机视觉技术,用户可以用手机拍摄药品图像,AI系统自动识别药名并提供说明、用法、禁忌等信息查询服务。1.客户服务智能助手基于自然语言处理技术,AI虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。1.药店运营分析AI可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。1.药品质量监控通过机器视觉、图像识别等技术,AI能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。1.药品防伪追溯利用区块链等技术,AI可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。

新工业革命:生物技术×人工智能

在所有这些领域(以及尚未出现的其他领域),生物制药和医疗保健的工业化都可以取得长足进展。例如,机器可以学习一个人经过徒弟式培训才能做到的事情。我们可以轻松地进行复制,这使我们可以像启动基于云的服务器一样扩展专业知识:立即、廉价(与专家劳动力相比)并具有巨大的规模。而且,这不仅限于计算:自动化和机器人技术同样实现了规模,同时进一步实现了以前不可能实现的真正的生物[可再现性](https://a16z.com/2018/11/12/how-to-engineer-biology/)——从而解决了“未工业化”的生物学的最大弱点。生物技术现在可以大规模地扩展。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
用what,why,how,will,next,作为五个力量,用熵增熵减作为二进制,组成的底层语言用其中的next作为自主学习探索动力的自进化AI,潜力怎么样?
用 what、why、how、will、next 作为五个力量,以熵增熵减作为二进制,组成底层语言,并以其中的 next 作为自主学习探索动力的自进化 AI 具有一定的潜力,但也面临一些挑战。 从潜力方面来看,这种设计可能有助于 AI 系统更有针对性地进行自主学习和探索。例如,what 可以帮助明确要学习和理解的对象或概念;why 有助于挖掘背后的原因和逻辑,促进更深入的理解;how 能够指导实现目标的方法和步骤;will 可以对未来的发展进行预测和规划。而将 next 作为自主学习探索的动力,有可能推动 AI 不断开拓新的知识领域。 然而,也存在一些挑战。首先,熵增熵减作为二进制的基础,其在实际应用中的有效性和稳定性需要进一步验证和优化。其次,如何准确地定义和运用这五个力量,以及它们之间的协同关系,需要精细的设计和调试。再者,将这种复杂的底层语言转化为实际的算法和模型实现,具有较高的技术难度。 总之,这种自进化 AI 的概念具有创新性和潜力,但需要在理论和实践上进行深入的研究和探索,以充分发挥其优势并克服可能的问题。
2025-04-12
最近的潜力AI项目是什么
以下是一些近期具有潜力的 AI 项目: 1. 《促进创新的人工智能监管方法》:其中提到了 AI 在数据生成和处理方面的进展,以及带来的机遇和风险,包括对安全、公平、隐私等方面的影响。 2. 前 Stability AI 核心成员成立新公司并获 3200 万美元融资,发布 Flux.1 开源图像生成模型,基于混合架构,结合 multimodal 和 parallel diffusion transformer。在线体验地址:https://flux1.ai 。 3. MindSearch:模仿人类在网络上寻找和整合信息的 AI 搜索引擎,能在 3 分钟内从 300+网页中收集和整合信息,相当于人类专家约 3 小时的工作量。项目地址:https://mindsearch.netlify.app 。 4. 180 度大转弯:Character AI 被 Google 收购,Character AI 首席执行官 Noam Shazeer 将带领部分员工重返谷歌。Google 以 25 亿美元的估值收购其投资者股票(每股 88 美元),但低于去年与早期投资者谈判的 50 亿美元。 5. OpenAI 的下一代 AI 模型已提交给美国 AI 安全研究所进行安全评估,OpenAI 此时与安全研究所合作,并支持增加其权力的法案,似乎试图通过影响安全研究所来控制或影响 AI 相关的法律和标准制定。
2025-03-14
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
帮我捋一捋思路,我要开发一个智能体agent,帮我做门店的增长潜力分析,我有门店所在区的数据,包括本地区常驻人口数量、每个人的用户画像,本区域各行业门店数量,门店的地理位置,每个门店每天的到访人数,每个到访用户的画像,包括他们家庭地址(有可能是本区的,也可能是其他区,甚至是外市的)。利用这些信息,我如何分析这个门店,在本区内是否有发展潜力,和他的同行业对手相比,他是否有竞争力,已经如何变得有竞争力,有什么机会?请给出完整、详细的分析思路,分析过程。
以下是为您梳理的利用所提供信息分析门店增长潜力、竞争力及机会的完整详细思路和过程: 一、数据整理与分析 1. 对门店所在区的常驻人口数量、用户画像、各行业门店数量、门店地理位置、每个门店每天的到访人数以及到访用户的画像(包括家庭地址)等数据进行分类整理。 二、门店增长潜力分析 1. 市场需求评估 分析常驻人口数量和用户画像,了解本地区的消费能力、消费偏好和潜在需求。 对比同行业其他门店的到访人数,评估市场饱和度。 2. 地理位置优势分析 考虑门店位置的交通便利性、周边配套设施以及与目标客户群体的距离。 3. 客户增长趋势 观察门店到访人数的变化趋势,判断是否有增长的迹象。 三、门店竞争力分析 1. 与同行业对比 比较本门店与同行业门店的到访人数、客户画像和经营数据。 分析同行业门店的优势和劣势,找出自身的差异化竞争点。 2. 服务质量评估 根据到访用户的画像和反馈,评估门店的服务质量和用户满意度。 3. 产品或服务特色 确定本门店的独特产品或服务特色,是否能够吸引和留住客户。 四、提升竞争力和机会挖掘 1. 优化策略 根据分析结果,制定针对性的营销策略,如针对特定客户群体的促销活动。 改进服务流程,提高服务质量。 2. 拓展业务 基于用户需求和市场趋势,考虑拓展新的产品或服务。 3. 合作与联盟 寻找与其他相关企业或品牌的合作机会,共同拓展市场。 4. 数字化转型 利用数据分析优化运营,提升客户体验,如线上预订、个性化推荐等。 总之,通过对上述数据的深入分析和综合评估,您可以全面了解门店的现状、潜力、竞争力以及未来的发展机会,并制定相应的策略来实现门店的增长和提升竞争力。
2024-11-29
有什么医药行业可用的AI技术
以下是医药行业可用的 AI 技术: 1. 医疗保健方面: 医学影像分析:用于分析医学图像,辅助诊断疾病,如 X 射线、CT 扫描和 MRI 等。 药物研发:加速药物研发过程,识别潜在的药物候选物和设计新的治疗方法。 个性化医疗:分析患者数据,为每个患者提供个性化的治疗方案。 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 2. 医疗药品零售领域: 药品推荐系统:利用机器学习算法分析用户数据,为用户推荐合适的非处方药品和保健品。 药品库存管理:通过分析历史销售数据等因素,预测药品需求量,优化库存管理策略。 药品识别与查询:借助计算机视觉技术,用户拍摄药品图像,自动识别药名并提供相关信息查询服务。 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 药店运营分析:分析药店的销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 药品质量监控:通过机器视觉等技术,自动检测药品的包装、标签、颜色等是否合格。 药品防伪追溯:利用区块链等技术,实现全流程的药品溯源,确保药品供应链的安全性和可信度。 3. 健康生物制药的研究方面: 提前诊断疾病,如提前三年诊断胰腺癌。 发现与疾病相关的新靶基因,如两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的基因。 帮助抗衰老,通过人工智能筛查化合物,发现高效的药物候选物。 寻找疾病的治疗方法,如利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。 早期诊断疾病,如早期诊断帕金森,通过神经网络分析患者体液中的生物标志物。
2024-12-06
关于生物医药科研方面,哪些AI比较适合
以下是一些在生物医药科研方面适合的 AI: 1. ChatGPT 和 Google Bard:在日常工作生活中很有用,极大加速了医疗健康生物制药的研究,在抗癌、抗衰老、早期疾病防治等研究应用中起着重要作用。 2. Scite.ai:是为研究人员、学者和行业专业人员打造的创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,能简化学术工作。(https://scite.ai/) 3. Scholarcy:是一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。(https://www.scholarcy.com/) 此外,AI 在生物医药科研领域有很多最新进展,例如: 1. AI 提前三年诊断胰腺癌,如果当年有这个,也许乔布斯还在世:https://hms.harvard.edu/news/aipredictsfuturepancreaticcancer 2. 两名高中生与医疗技术公司 Insilico Medicine 及其人工智能平台 PandaOmics 合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要:https://finance.yahoo.com/news/teenagegeniusesaiuncovercancer163541619.html 3. AI 帮助抗衰老;由 Integrated Biosciences 领导的一项最新研究通过使用人工智能筛查了超过 800,000 种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质:https://www.earth.com/news/artificialintelligenceidentifiesnewantiagingcompounds/ 4. 使用 AI 寻找阿尔兹海默症的治疗方法;亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点:https://medicalxpress.com/news/202305scientistsaidrugalzheimer.html 现在,我们正处于一个革命的起点,AI 正在工业化生物制药和医疗保健,被应用于从药物设计和诊断到医疗保健交付和后勤功能的各个方面。
2024-09-09
扩展以下内容到500字:数智中医是中医药融入“一带一路”的抓手当前,充分融合互联网、大数据、物联网、云计算、人工智能AI、区块链等数智技术对传统中医药服务进行全方位、全链条优化,提高全要素生产率,构建一批示范中医医疗机构、中医馆、中医健管中心,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,促进数智中医“产学研用”的国际合作及产业发展,助推重庆成为数智中医发展新高地。
数智中医作为中医药融入“一带一路”的重要抓手,在当今时代具有极其重要的意义。 如今,互联网、大数据、物联网、云计算、人工智能 AI、区块链等数智技术蓬勃发展,为传统中医药服务带来了全新的机遇。通过充分融合这些先进技术,能够对传统中医药服务进行全方位、全链条的优化。这种优化涵盖了从检测到管理的各个环节,全面提升了服务的质量和效率。 在检测方面,借助先进的技术手段,可以更精准地获取患者的身体状况信息,为后续的诊断提供更可靠的数据支持。诊断环节则因数智技术的融入而更加准确和高效,能够快速识别病症的根源。治疗过程中,数智技术能够辅助医生制定更个性化、更科学的治疗方案,提高治疗效果。 评价环节也得以创新,能够更全面、客观地评估治疗效果和患者的康复情况。而在管理方面,数智技术有助于实现对医疗资源的合理调配和高效管理,提高整个医疗服务体系的运行效率。 构建一批示范中医医疗机构、中医馆、中医健管中心,是推动数智中医发展的重要举措。这些示范机构将成为展示数智中医成果的窗口,吸引更多的关注和投入。同时,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,能够形成一个良性循环,不断提升服务水平和质量。 促进数智中医“产学研用”的国际合作及产业发展,对于推动中医药走向世界具有关键作用。通过国际合作,可以吸收借鉴其他国家的先进经验和技术,进一步完善数智中医体系。这将有助于提升我国中医药在国际上的影响力,为全球健康事业贡献中国智慧和力量。 重庆作为一个具有发展潜力的地区,有望借助数智中医的发展,成为这一领域的新高地,引领行业的发展潮流,为当地乃至全国的中医药事业注入新的活力。
2024-08-12
扩展以下内容到500字:数智中医是中医药融入“一带一路”的抓手当前,充分融合互联网、大数据、物联网、云计算、人工智能AI、区块链等数智技术对传统中医药服务进行全方位、全链条优化,提高全要素生产率,构建一批示范中医医疗机构、中医馆、中医健管中心,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,促进数智中医“产学研用”的国际合作及产业发展,助推重庆成为数智中医发展新高地。
数智中医作为中医药融入“一带一路”的重要抓手,在当前的时代背景下具有极其重要的意义。 如今,互联网、大数据、物联网、云计算、人工智能 AI、区块链等数智技术蓬勃发展,为传统中医药服务带来了前所未有的机遇。通过充分融合这些先进技术,能够对传统中医药服务进行全方位、全链条的优化。这种优化涵盖了从患者的检测环节,利用先进的设备和算法,更精准地获取身体状况的信息;到诊断环节,借助大数据分析和人工智能的辅助,提高诊断的准确性和效率;再到治疗环节,依据患者的个体差异制定个性化的治疗方案;以及评价环节,通过科学的指标和数据分析,客观评估治疗效果;最后到管理环节,实现对医疗资源的合理调配和患者的全程跟踪管理。 构建一批示范中医医疗机构、中医馆、中医健管中心,是推动数智中医发展的重要举措。这些示范机构将成为展示数智中医成果的窗口,吸引更多的关注和投入。同时,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,能够形成一个完整、高效的医疗服务体系,为患者提供更优质的医疗体验。 促进数智中医“产学研用”的国际合作及产业发展,对于推动中医药走向世界具有关键作用。加强国际合作,可以引入国外的先进技术和理念,同时也能将我国的中医药文化和数智中医成果推广出去。这不仅有助于提升我国在中医药领域的国际影响力,还能为全球医疗健康事业贡献中国智慧和中国方案。 重庆作为一个具有发展潜力的城市,有望借助数智中医的发展契机,成为数智中医发展的新高地。通过政策支持、人才培养、技术创新等多方面的努力,重庆能够在数智中医领域取得显著成就,为中医药事业的繁荣发展注入新的活力。
2024-08-12
扩展以下内容到500字:数智中医是中医药融入“一带一路”的抓手当前,充分融合互联网、大数据、物联网、云计算、人工智能AI、区块链等数智技术对传统中医药服务进行全方位、全链条优化,提高全要素生产率,构建一批示范中医医疗机构、中医馆、中医健管中心,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,促进数智中医“产学研用”的国际合作及产业发展,助推重庆成为数智中医发展新高地。
2024-08-12
扩展以下内容:数智中医是中医药融入“一带一路”的抓手当前,充分融合互联网、大数据、物联网、云计算、人工智能AI、区块链等数智技术对传统中医药服务进行全方位、全链条优化,提高全要素生产率,构建一批示范中医医疗机构、中医馆、中医健管中心,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,促进数智中医“产学研用”的国际合作及产业发展,助推重庆成为数智中医发展新高地。
数智中医乃是中医药融入“一带一路”的关键着力点。在当下,将互联网、大数据、物联网、云计算、人工智能 AI、区块链等数智技术进行充分融合,对传统的中医药服务展开全方位、全链条的优化工作,全力提升全要素生产率。构建一系列示范中医医疗机构、中医馆以及中医健管中心,积极创新数智中医在“检测、诊断、治疗、评价、管理”方面的新中医服务闭环模式,大力促进数智中医“产学研用”的国际合作以及产业发展,有力助推重庆成为数智中医发展的全新高地。
2024-08-12
ai可以和哪些领域结合,让普通的人的生活得到帮助
AI 可以与以下领域结合,为普通人的生活提供帮助: 1. 教育培训: 借助大型语言模型,人工智能生成的角色可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。 数字教师可以实现一对一辅导,根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,缓解教育资源不平等的问题。 人工智能生成的虚拟角色也可以是数字陪伴,促进儿童成长。 2. 娱乐和休闲: 在影视行业,AGI 时代每个人都可以让 AI 根据自己喜好“量身定制”电影或剧集,甚至互动式地发展剧情。 在游戏领域,AGI 可以创造出高度逼真的虚拟角色,与玩家互动,使游戏世界更加生动。 在音乐、美术创作方面,AGI 能与人类艺术家协作或作为创作者助理,普通人也可以通过简短描述让 AGI 生成作品。 3. 日常生活: AGI 可以读取用户日程和邮件,自动为用户安排最优路线、预订餐厅、购买日用品等。 在购物时,AI 可以根据用户的尺寸和喜好筛选商品清单,甚至替用户做决定。 但在享受这些便利的同时,也需要警惕过度依赖带来的问题,如人类判断力和独立思考能力的退化。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
有哪些完整综观地阐述了2022年到2025年AIGC相关技术和在设计领域的应用发展的研究报告
以下是为您找到的一些可能符合您需求的研究报告: 1. 月狐数据联合发布的《AI 产业全景洞察报告 2025》,深入分析了全球及中国人工智能产业的发展现状、全景图谱及企业出海情况。指出全球 AI 产业保持 19.1%的年均增长率,2024 年第三季度交易数量达 1245 笔,融资规模显著提升。美国在 AI 领域融资和应用市场中占据主导地位,中国紧随其后,2024 年一季度大模型规模占全球的 36%。国内 AI 企业出海呈现增长趋势,工具类和图像处理类应用在海外市场受欢迎,但东南亚和东亚地区付费习惯尚未形成。还展示了 AI 在各行业的应用现状,包括智慧医疗、智慧教育、企业服务等,强调了 AIGC 技术在提升用户体验和推动产业发展中的关键作用。链接:https://waytoagi.feishu.cn/record/DFqRrh4kqeqaIFchKtocVwVkn2d 2. 甲子光年的《2025 具身智能行业发展研究报告:具身智能技术发展与行业应用简析》,指出具身智能作为具备物理载体的智能体,强调通过与环境的交互实现智能行为,是人工智能与机器人技术的深度融合。当前,具身智能正处于技术萌芽期,受大模型技术推动成为热点,但在数据采集、模型泛化、技术路线等方面仍面临挑战。报告分析了具身智能的发展背景、现状及应用场景,认为中国在具身智能领域已走在国际前列,具备庞大的市场需求、完善的产业集群和良好的政策支持。链接:https://waytoagi.feishu.cn/record/TERPru4Jee7Gzbcu54WcUjsXnJh 3. 智能纪要:【跨界·未来】AIGC×视觉交互工作坊 Part1:AI 应用前瞻 2025 年 3 月 11 日。涵盖了 AI 在艺术创作中的应用与探索,包括 Lora 模型训练素材、模型训练比赛、Checkpoint 模型、线上与本地工作流、学习资源推荐、AI 创作挑战、装置艺术脉络、机械装置艺术理论、国内外装置艺术区别、AIGC 艺术尝试、机械进化与装置创作等方面。
2025-03-31
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28