Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

图生文功能的开源数据集有哪些?

Answer

图生文功能的开源数据集有一些,其中一个比较知名的是智源研究院 FlagEval 团队开源的ImageEval-prompt。这是一个细粒度的文生图模型测评数据集,从实体、风格、细节上拆分出 11 个评测子维度,并对 DALL-E 2、Stable Diffusion、 AltDiffusion-m18 、ERNIE-ViLG 等模型进行了对比测评。

此外,还有一些其他的开源数据集可以用于训练和评估图生文模型,但具体的选择取决于您的需求和目标。希望这个信息对您有所帮助!

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
图生文怎么制作
以下是关于图生文制作的详细步骤: 一、Tusiart 简易上手教程 1. 定主题:明确您需要生成的图片的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:根据主题,选择内容贴近的 checkpoint,如麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等。 3. 选择 lora:基于生成内容,寻找重叠的 lora 以控制图片效果和质量,可参考广场上好看帖子中使用的 lora。 4. ControlNet:用于控制图片中的特定图像,如人物姿态、特定文字、艺术化二维码等,属于高阶技能,可后续学习。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 这个即可。 7. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语组合,用英文半角逗号隔开,无需管语法和长句。 8. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,同样是单词和短语组合,用英文半角逗号隔开,无需语法。 9. 采样算法:一般选 DPM++2M Karras 较多,也可留意 checkpoint 详情页上模型作者推荐的采样器。 10. 采样次数:选 DPM++2M Karras 后,采样次数在 30 40 之间,过多意义不大且慢,过少出图效果差。 11. 尺寸:根据个人喜好和需求选择。 二、Liblibai 简易上手教程 1. 定主题:确定要生成的图片的主题、风格和表达信息。 2. 选择 Checkpoint:依照主题找贴近的 checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora 来控制图片效果和质量,参考广场上的优秀帖子。 4. 设置 VAE:无脑选 840000 那一串。 5. CLIP 跳过层:设成 2 。 6. Prompt 提示词:用英文写想要 AI 生成的内容,单词和短语组合,用英文半角逗号隔开,不管语法和长句。 7. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,单词和短语组合,用英文半角逗号隔开,不管语法。 8. 采样方法:一般选 DPM++2M Karras 较多,留意 checkpoint 详情页上模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 后,在 30 40 之间,过多意义不大且慢,过少出图效果差。 10. 尺寸:根据个人喜好和需求选择。 11. 生成批次:默认 1 批。 三、SD 新手入门图文教程 1. CFG Scale(提示词相关性):决定图像与提示的匹配程度,增加该值会使图像更接近提示,但可能降低图像质量,可用更多采样步骤抵消,一般开到 7 11 ,过高会有粗犷线条和过锐化图像。 2. 生成批次:每次生成图像的组数,一次运行生成图像的数量为“批次×批次数量”。 3. 每批数量:同时生成的图像个数,增加会提高性能但需更多显存,若显存未超 12G ,保持为 1 。 4. 尺寸:指定图像长宽,出图尺寸太宽可能出现多个主体,1024 以上尺寸可能效果不理想,推荐小尺寸分辨率+高清修复(Hires fix) 。 5. 种子:决定模型生成图片时的随机性,初始化 Diffusion 算法起点的初始值,相同参数下应生成相同图片。 6. 高清修复:通过勾选“Highres.fix”启用,默认高分辨率下会生成混沌图像,使用后先按指定尺寸生成再放大,实现高清大图效果,最终尺寸为(原分辨率×缩放系数 Upscale by) 。
2025-03-11
多模图生文评测集
以下是关于多模图生文评测集的相关信息: 为全面比较 Kolors 与其他模型的生成能力,构建了包含人工评估、机器评估的全面评测内容。构建了包含 14 种垂类、12 个挑战项、总数量为一千多个 prompt 的文生图评估集 KolorsPrompts。在 KolorsPrompts 上,收集了 Kolors 与市面上常见的 SOTA 级别的开源/闭源系统的文生图结果,并进行了人工评测和机器评测。 人工评测方面,邀请了 50 个具有图像领域知识的专业评估人员对不同模型的生成结果进行对比评估,衡量维度为画面质量、图文相关性、整体满意度三个方面。Kolors 在整体满意度方面处于最优水平,其中画面质量显著领先其他模型。具体的平均分数如下: AdobeFirefly:整体满意度平均分 3.03,画面质量平均分 3.46,图文相关性平均分 3.84。 Stable Diffusion 3:整体满意度平均分 3.26,画面质量平均分 3.5,图文相关性平均分 4.2。 DALLE 3:整体满意度平均分 3.32,画面质量平均分 3.54,图文相关性平均分 4.22。 Midjourneyv5:整体满意度平均分 3.32,画面质量平均分 3.68,图文相关性平均分 4.02。 Playgroundv2.5:整体满意度平均分 3.37,画面质量平均分 3.73,图文相关性平均分 4.04。 Midjourneyv6:整体满意度平均分 3.58,画面质量平均分 3.92,图文相关性平均分 4.18。 Kolors:整体满意度平均分 3.59,画面质量平均分 3.99,图文相关性平均分 4.17。所有模型结果取自 2024.04 的产品版本。 Kolors 开源模型相关: 2024.07.03,Kolors 在智源研究院评测中取得第二名,其中中文主观质量、英文主观质量两个单项排名第一。 2024.07.02,祝贺,可图项目组提出的可控视频生成方法被 ECCV 2024 接收。 2024.02.08,祝贺,可图项目组提出的生成模型评估方法被 CVPR 2024 接收。 多模态大模型入门指南: 训练过程: 预训练阶段:通常利用 XText 的数据集,来训练输入、输出的 Projector。通过优化损失函数来实现不同模态的对齐。PEFT 有时候用于 LLM Backbone。X文本数据集包含图像文本、视频文本和音频文本,其中图像文本有两种类型:图像文本对(即<img1><txt1>)和交错图像文本语料库(即,txt1><img1><txt2><txt3><img2><txt4>)。这些 XText 数据集的详细统计数据如附录 F 的表 3 所示。 多模态微调:对满足指令微调格式的一系列数据集对预训练好的多模态大模型进行微调。通过这种微调,MMLLM 可以遵循新的指令泛化到没有见过的任务,增强 zeroshot 的能力。MM IT 包括监督微调(SFT)和 RLHF 两部分,目的是为了使得模型符合人类的意图或者偏好,并且增强 MMLLMs 的交互能力。SFT 将 PT 阶段的数据转换为指令aware 的格式,使用 QA 任务作为例子。可以采用各种模板。优化目标和预训练相同,SFT 数据可以构造为单轮的 QA 或者多轮的 QA。常用的 SFT 和 RLHF 的数据集见表 4。
2024-12-06
图生文评测集
以下是关于图生文评测集的相关内容: 为全面比较 Kolors 与其他模型的生成能力,构建了包含人工评估、机器评估的全面评测内容。在相关基准评测中,Kolors 表现有竞争力,达业界领先水平。构建了包含 14 种垂类、12 个挑战项、总数量一千多个 prompt 的文生图评估集 KolorsPrompts。在 KolorsPrompts 上,收集了 Kolors 与常见 SOTA 级别开源/闭源系统的文生图结果,并进行人工评测和机器评测。 人工评测方面,邀请 50 个具有图像领域知识的专业评估人员对不同模型生成结果对比评估,衡量维度为画面质量、图文相关性、整体满意度。Kolors 在整体满意度方面最优,画面质量显著领先其他模型。具体平均分如下: |模型|整体满意度平均分|画面质量平均分|图文相关性平均分| ||||| |AdobeFirefly|3.03|3.46|3.84| |Stable Diffusion 3|3.26|3.5|4.2| |DALLE 3|3.32|3.54|4.22| |Midjourneyv5|3.32|3.68|4.02| |Playgroundv2.5|3.37|3.73|4.04| |Midjourneyv6|3.58|3.92|4.18| |Kolors|3.59|3.99|4.17| 此外,还有关于 Vidu 大家测试和 Tusiart 简易上手教程的相关信息: Vidu 全球上线,注册即刻体验。Web 端访问:https://www.vidu.studio/ ,具有极速生成(实测 30 秒最快推理速度)、动漫风格、角色可控、精准理解、大片质感等特点。同时提供了“文生视频”“图生视频(用作起始帧)”“参考人物角色生成视频”的使用指南及相关视频链接。 Tusiart 简易上手教程中,文生图的相关要点包括:提示词相关性(数字在 5 15 之间为宜)、随机种子、ADetailer(面部修复插件)、CLIP skip(设成 2 )。
2024-12-06
图生文模型
以下是关于图生文模型的相关信息: Kolors 是一款强大的开源文生图模型,具有更强的中文文本编码器、机造的高质量文本描述、人标的高质量图片、强大的中文渲染能力,以及巧妙的 noise schedule 解决高分辨率图加噪不彻底的问题。实测效果很不错,展现了快手的技术实力。 Tripo AI 中,文生 3D 模型是用一段文字生成 3D 模型,在「Create」界面底部输入框输入提示词(不支持中文),不会写提示词可点击输入框左侧的</>按钮随机生成并自动填入。填写好提示词后点击右侧「Create」生成 3D 模型,每次生成 4 个基础模型,不满意可点击「Retry」重新生成。有满意的模型点击单个模型下方黄色的「Refine」精修,精修进度在「My Models」中查看,一般 5 分钟左右完成。图生 3D 模型是用一张图片生成 3D 模型,点击输入框右侧的图标上传图片即可生成,一次生成一个基础模型,同样支持重生成和精修。 Tusiart 文生图操作流程包括:定主题,确定生成图片的主题、风格和信息;选择基础模型 Checkpoint,找内容贴近的模型;选择 lora,寻找内容重叠的 lora 控制图片效果及质量;ControlNet 用于控制图片中特定图像;设置 VAE 无脑选择 840000;Prompt 提示词用英文写需求,单词和短语用英文半角逗号隔开;负向提示词 Negative Prompt 用英文写避免产生的内容,单词和短语组合并用英文半角逗号隔开;采样算法一般选 DPM++ 2M Karras,也可参考模型作者推荐的采样器;采样次数根据采样器特征,选 DPM++ 2M Karras 时一般在 30 40 之间;尺寸根据个人喜好和需求选择。
2024-11-13
图生文产品经理工作内容,详细一些
以下是关于图生文产品经理工作内容的详细介绍: 1. 学历与专业背景:通常要求本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 工具使用与原理掌握:熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目负责:负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术了解:了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析与决策:对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维:具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 前沿关注:对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践;对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程与算法能力:具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成;具有一定的编程基础,熟练使用 Python、Git 等工具。 此外,从实际案例来看,产品经理还会在工作中运用 AI 工具解决实际问题,如使用 GPT 优化代码以提高工作效率和解决性能问题等。
2024-10-16
推荐免费使用的图生文的AI
以下为您推荐一些免费使用的图生文的 AI 工具: 1. Clip Interrogator:这是一款「图生文」反向工具,上传图片即可生成对应的文字描述。实测上传真实照片也可生成对应 prompt。 网址:https://replicate.com/pharmapsychotic/clipinterrogator 2. Midjourney:已实现「图生文」反向输出功能。 此外,还有一些相关的 AI 工具供您参考: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 3. Leonardo:能生成高质量图片,支持用户上传自己 DIY 的模型,提供丰富的模型选择,但存在访问限制。 更多相关工具和信息您可以查看:https://www.waytoagi.com/category/38 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-11
自动生成提示词的开源工具有哪些
以下是一些自动生成提示词的开源工具: 1. Freepik 推出的 Reimagine AI 工具:用户上传图片即可自动生成提示词,无需输入文字。它还能实时提供无限滚动结果展示,边操作边生成图像,通过调整提示词实时修改图片细节,并支持多种风格切换。相关链接:https://freepik.com/pikaso/reimagine 、https://x.com/imxiaohu/status/1770437135738581414?s=20 2. StreamMultiDiffusion 项目:使用区域文本提示实时生成图像,具有交互式操作体验,每个提示控制一个区域,实现精准图像生成。相关链接:https://arxiv.org/abs/2403.09055 、https://github.com/ironjr/StreamMultiDiffusion?tab=readmeovfile 、https://huggingface.co/spaces/ironjr/SemanticPalette 、https://x.com/imxiaohu/status/1770371036967850439?s=20 3. 【SD】自动写提示词脚本 One Button Prompt:可以在主菜单输入人物提示词,在“高级”中设置提示词混合,还具有一键运行放大的模块,包括完整的文生图放大和图生图放大,甚至可接入其他脚本和 controlnet。获取方式:添加公众号【白马与少年】,回复【SD】。
2025-04-12
开源flux模型如何快速使用
以下是关于开源 Flux 模型快速使用的方法: 1. 模型的下载: 如果因为环境问题,可以在网盘中下载。 siglipso400mpatch14384(视觉模型):siglip 由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容并将这些视觉信息编码成一组特征向量。打开 ComfyUI\models\clip,在地址栏输入 CMD 回车,打开命令行,输入下面的命令拉取模型(也可以在网盘里下载)。 image_adapter.pt(适配器):连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征,使其适合语言模型处理。通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,如果该文件夹不存在,就新建一个。 MetaLlama3.18Bbnb4bit(语言模型):大型语言模型,负责生成文本描述。工作流程包括接收经过适配器处理的特征、基于这些特征生成相应的文本描述、应用语言知识来确保描述的连贯性和准确性。打开 ComfyUI\models\LLM,地址栏输入 CMD 回车,在命令行里面输入下面命令。 2. 下载地址: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 准备了夸克和百度的网盘链接,方便部分同学下载: flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 3. 工作流下载: 最后我们再下载 dev 的工作流: 。或者下面官方原版的图片链接,图片导入 comfyUI 就是工作流:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png 。我们打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。
2025-04-08
开源AI Agent软件有哪些
以下是一些开源的 AI Agent 软件: 1. AutoGPT 和 BabyAGI:在去年 GPT4 刚发布时风靡全球科技圈,给出了让 LLM 自己做自动化多步骤推理的解题思路。 2. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具。 3. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 4. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 5. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 6. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 7. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,智谱·AI 开源的语言模型中也有与 Agent 相关的,如 AgentLM7B、AgentLM13B、AgentLM70B 等。
2025-03-29
mcp 有什么开源的方案吗
Anthropic 于 2024 年 11 月推出并开源了 MCP(模型上下文协议)。MCP 就像一个“转接头”或“通用插座”,能统一不同的外部服务,如 Google Drive、GitHub、Slack、本地文件系统等,通过标准化接口与大语言模型对接。开发者基于 MCP 规范开发一次“接口适配器”(MCP 服务器),就能让所有兼容 MCP 的模型(MCP 客户端)无缝接入,无需针对每个模型单独适配,大幅提升兼容性与开发效率。MCP 里面还包含 SSE(ServerSent Events),是一种允许服务器向浏览器推送实时更新的技术。MCP 像为 AI 模型量身定制的“USBC 接口”,可以标准化地连接 AI 系统与各类外部工具和数据源。与传统 API 相比,MCP 是单一协议,只要一次整合就能连接多个服务;具有动态发现功能,AI 模型能自动识别并使用可用的工具;支持双向通信,模型不仅能查询数据,还能主动触发操作。相关链接:
2025-03-27
帮我列举2025年3月1日以来,国内外、闭源开源模型厂商的更新记录。
以下是 2025 年 3 月 1 日以来,国内外、闭源开源模型厂商的部分更新记录: 2025 年 3 月 20 日,OpenAI 推出了一套全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持,包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 李开复公开表示 OpenAI 面临生存危机,商业模式不可持续。他强调中国的 DeepSeek 以极低成本提供接近的性能,开源模式将主导未来 AI 发展。他认为企业级 AI 应用将成为投资重点,资源限制反而促进了创新。李开复大胆预测,中国将出现三大 AI 玩家,竞争愈发激烈。 SuperCLUE 发布《中文大模型基准测评 2025 年 3 月报告》,指出 2022 2025 年经历多阶段发展,国内外模型差距缩小。测评显示 o3mini总分领先,国产模型表现亮眼,如 DeepSeekR1 等在部分能力上与国际领先模型相当,且小参数模型潜力大。性价比上,国产模型优势明显。DeepSeek 系列模型深度分析表明,其 R1 在多方面表现出色,蒸馏模型实用性高,不同第三方平台的联网搜索和稳定性有差异。 以上信息来源包括: 《》 《》 《》
2025-03-26
现在Ai作图用什么?还是以前的Stable Diffusion吗?还是又出现了新的开源软件?
目前在 AI 作图领域,Stable Diffusion 仍然是常用的工具之一。Stable Diffusion 是 AI 绘画领域的核心模型,能够进行文生图和图生图等图像生成任务,其完全开源的特点使其能快速构建强大繁荣的上下游生态。 除了 Stable Diffusion,也出现了一些新的相关开源软件和工具,例如: :Stability AI 开源的 AI 图像生成平台。 :拥有超过 700 种经过测试的艺术风格,可快速搜索查找各类艺术家,并支持一键复制 Prompt。 同时,市面上主流的 AI 绘图软件还有 Midjourney,其优势是操作简单方便,创作内容丰富,但需要科学上网并且付费。如果您想尝试使用 Stable Diffusion,可以参考 B 站【秋葉 aaaki】这个 Up 主的视频了解具体的安装方法。
2025-03-24
runway的能力类型,核心功能
Runway 的能力类型和核心功能包括以下方面: 在 Gen2 模型上推出了较多细节控制能力,并且支持精细数值调节,是当下 AI 视频生成产品中可控性最强的产品。 多笔刷控制局部运动:支持最多 5 个笔刷控制,包括物体运动方向、运动曲线调节。调高 Ambient,笔刷绘制区域物体的运动将和周边环境产生更多关联,并加大运动幅度。 相机控制:支持水平/垂直平移,水平/垂直翻转,镜头缩放/旋转。 Lip Sync Video:支持文本转 TTS 音频、音频文件换音,还有上半年大火的 Lip sync video 对口型能力。 不论是工具栏中不断丰富的音频、视频处理能力,还是 Runway Watch 栏目中的优秀合作案例,都能看出 Runway 一直坚定得在影视制作方向发展。未来若能打通 AI 生成和视频剪辑能力,Runway 未来将对影视制作起到至关重要的作用,成为视频领域必不可少的重要工具。
2025-04-15
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
如果我要分析代码功能
如果您要分析代码功能,可以参考以下步骤: 1. 准备工作: 分析要拷贝页面的技术栈,可通过打开 https://www.wappalyzer.com/ 输入要分析的网站地址获取。 截图要克隆的网页。 分析页面功能,如顶部导航栏、页面主体区域(包括分类在左边、文章列表在右边、标题位置、文章卡片展示位置、文章列表和分类区域)、底部导航栏。 2. 开始克隆出效果,并逐渐完善: 根据分析拆分后续要实现的内容,如先实现文章列表部分和底部导航栏。 对于文章列表部分,可使用提示词根据图片实现,注意不要直接点击全部接受,先看效果,不符合需求可拒绝或让 AI 解释新增代码的作用。 对于左侧菜单栏,可通过提示词实现,如要求内容是文章的分类,在页面滚动时菜单会吸顶。若出现异常,可选中所有异常添加到对话,让 AI 解决。 可让 AI 添加注释解释每段代码对应的功能,以便精准提出修改建议。 明确提示词,说清楚要实现的功能的位置、大小、效果。 3. 对于 AI Review(测试版): 这是一项可查看代码库中最近更改以捕获潜在错误的功能。 您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天获取详细信息。 为让其更有利,您可为 AI 提供自定义说明以专注于特定方面,如性能相关问题。 目前有几个选项可供选择进行审核,如查看工作状态、查看与主分支的差异、查看上次提交。
2025-04-09
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
CRM那些功能适合和ai结合
AIGC 在 CRM 中的应用主要包括以下几个方面: 1. 个性化营销内容创作:根据客户个人信息、购买历史、偏好等数据生成个性化且富有创意的营销文案、视觉内容等,提高营销效率和转化率。 2. 客户服务对话系统:基于 AIGC 的对话模型开发智能客服系统,通过自然语言交互解答客户咨询、投诉等,缓解人工客服压力。 3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,结合推荐算法为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成:AIGC 可以自动生成数据分析报告,包括文字、图表、视频演示等形式,加快报告生产流程。 5. 智能翻译和本地化:提供高质量的多语种翻译及本地化服务,帮助企业打造全球化营销内容。 6. 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析:高效分析海量客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 以下是一些与 AI 结合的 CRM 相关产品推荐: 1. Clay:一款 AI 驱动的联系人应用软件,自动整理联系人信息,帮助管理个人和职业人脉。 2. Promptden:提示词交流和交易社区,可探索、发现和分享从 ChatGPT 和 Bard 文本提示到 MidJourney、Stable Diffusion 等 AI 生成的图像。 3. Parthean AI:财务教练,将 AI 工具与个人财务信息集成,提供定制答案,帮助用户制定预算并规划财务目标。 4. TinyStudio:免费的 Mac 应用程序,利用 M1/M2 芯片为视频和音频文件生成字幕。 5. Pagegpt:提供个性化网页设计,生成文案和图片,帮助吸引和转化顾客。 此外,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLMs 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。例如,Omni 的计算 AI 功能利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。
2025-04-09