Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI和软件测试行业的实践想法

Answer

目前知识库中暂时没有关于 AI 和软件测试行业实践想法的相关内容。但一般来说,在软件测试行业中应用 AI 可以考虑以下几个方面:

  1. 利用机器学习算法进行测试用例的自动生成和优化,提高测试覆盖度和效率。
  2. 运用自然语言处理技术对测试需求和文档进行分析,提取关键信息,辅助测试计划的制定。
  3. 通过 AI 模型对软件的历史缺陷数据进行学习,预测可能出现的新缺陷类型和位置。
  4. 借助图像识别和语音识别等技术,实现对软件界面和交互的自动化测试。

您可以根据实际情况和具体需求,进一步探索和创新 AI 在软件测试行业中的应用。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
如何通过AI进行软件测试?有什么好用的AI工具,以及详细的步骤是什么?
以下是关于如何通过 AI 进行软件测试以及相关好用的 AI 工具和详细步骤的介绍: 一、基于规则的测试生成 1. 测试用例生成工具 Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 2. 模式识别 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 二、基于机器学习的测试生成 1. 深度学习模型 DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 2. 强化学习 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 三、基于自然语言处理(NLP)的测试生成 1. 文档驱动测试生成 Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 2. 自动化测试脚本生成 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 四、基于模型的测试生成 1. 状态模型 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 2. 场景模拟 Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 五、实践中的应用示例 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 六、好用的 AI 工具 Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。 希望以上内容对您有所帮助。
2025-03-16
如何高效的编写软件测试用例
以下是关于如何高效编写软件测试用例的方法: 1. 基于规则的测试生成 测试用例生成工具 Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成 深度学习模型 DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成 文档驱动测试生成 Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成 状态模型 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟 Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例 Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 6. 工具和平台 Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2025-01-22
有没有关于软件测试的ai工具,可以辅助我测试web网页
目前在 AI 领域中,专门用于辅助测试 Web 网页的工具相对较少。但一些通用的 AI 工具和技术可能会对软件测试有所帮助,例如利用自然语言处理技术来分析测试需求和报告,或者使用机器学习算法来预测可能出现的错误类型。不过,这些应用可能需要一定的定制和整合才能更好地适应 Web 网页测试的特定需求。
2024-12-09
我想基于一个开源模型,训练一个自己的AI模型,用于编写软件测试用例,如何实现呢
要基于开源模型训练一个用于编写软件测试用例的 AI 模型,您可以参考以下步骤: 1. 选择合适的部署方式:包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源:确保有足够的训练数据覆盖软件测试用例的相关场景,同时准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础:可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对编写软件测试用例的目标任务进行模型微调训练:根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型:将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护:模型涉及大量数据和隐私信息,需要重视安全性和合规性。 总的来说,训练这样一个模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-23
ai 软件测试
以下是关于 AI 软件测试的相关内容: 实践中的应用示例: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 工具和平台: 1. Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 2. Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 3. DeepTest:利用深度学习生成自动驾驶系统测试用例。 4. GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 5. Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。 另外,在 Coze 官方教程中,搭建好第一个 AI Bot 后,配置好 Bot 就可以在预览与调试区域中测试 Bot 是否符合预期,可单击清除图标清除对话记录。
2024-09-19
有没有软件测试的AI
以下是一些可用于软件测试的 AI 工具: 1. Testim:这是一个 AI 驱动的自动化测试平台,能够生成和管理测试用例。 2. Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 3. DeepTest:利用深度学习生成自动驾驶系统测试用例。 4. GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 5. Pex:由微软开发的智能测试生成工具,可自动生成高覆盖率的单元测试。 在实践中的应用示例包括: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 Teste.ai 也是一个相关的人工智能平台,专为软件测试领域的质量专业人员设计。其官网链接为 https://www.teste.ai/ ,该平台提供一系列由人工智能驱动的智能工具,旨在加速软件质量之旅,并提高现代测试人员的生产力。
2024-08-01
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
如果是小白新手,理论应用到实践中最重要的是什么
对于小白新手,将理论应用到实践中,以下几点最为重要: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,可找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习,同时掌握提示词技巧。 4. 实践和尝试:理论学习后,实践是巩固知识的关键。尝试使用各种产品做出作品,知识库中有很多实践后的作品和文章分享,欢迎分享自己的实践成果。 5. 体验 AI 产品:与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 此外,就像有人认为“只要知道它的原理和历史,自然而然就会知道它的底线和顶点在哪里”,但实践中的体验和尝试同样不可或缺。
2025-04-13
学的理论模型如何高效指导实践,在教学中
在教学中,关于如何让学习的理论模型高效指导实践,以下是相关内容: 本系列课程是由 Deeplearning 联合谷歌 Gemini 团队开发的免费在线课程,以 Gemini 模型作为教学模型,教授如何使用多模态提示词与模型交互。但课程内容在国内存在部分无法应用的情况,且缺乏某些概念。因此,对部分教程内容进行了重新整理和刊发,并适当混合了一些入门概念,以增强普世价值。(如有需要,请访问) 在本节课程中您可以学到: 通过实践,与视频内容交互,辅助工作与学习。 通过实践,学习 Function Calling 概念与实际应用。 扩展阅读: )
2025-04-13
ai在茶饮或者餐饮行业的实践
以下是 AI 在茶饮或餐饮行业的一些实践: 中昊智达是一家智能饮茶机研发与运营服务商,专注于智能饮茶机的研发、生产和市场投放。该公司整合了茶叶种植、生产、销售和体验等多方资源,构建了完整的产业链,致力于为消费者提供便捷的茶饮服务。 有人对利用 ComfyUI 的底层原理搭建适用于中医药房自动抓药或养生茶饮茶方的工作流感兴趣。 大雍是新茶饮行业的全栈服务商,在 AI 社群的共创项目里主要负责剧本创意和分镜脚本部分。
2025-04-09
AI在人力资源中的实践应用资料
以下是关于 AI 在人力资源中的实践应用资料: 在人力资源管理领域,AI 的应用覆盖了多个环节,显著提高了工作效率。 在招聘初期,AI 可用于职位描述生成、简历分析、面试题设计等方面。 在员工绩效评估中,AI 能够分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈。 在员工培训与发展方面,AI 也能发挥作用。 相关报告推荐: 《》预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。 此外,在全行业中,基础办公提效如 ppt、excel、会议报告、策划会、文案包装、图文海报、客服机器人 bot 等,都可以从【单个任务 task>角色 role>角色间协同 collaboration】显著提高工作效率。
2025-03-31
公司给我了一个调研作业,收集 市场上其它公司在agent业务变革上的优秀实践
很抱歉,目前没有关于市场上其他公司在 agent 业务变革方面优秀实践的相关内容。建议您通过以下途径进行收集和调研: 1. 行业报告和研究机构发布的分析:这些通常会涵盖多个公司在特定领域的实践和趋势。 2. 专业的行业论坛和社区:与同行交流,获取他们的经验和见解。 3. 公司的官方网站和公开资料:了解其业务变革的介绍和相关案例分享。 4. 新闻媒体报道:关注相关的商业新闻,获取最新的动态和实践案例。
2025-03-31
实践案例推荐,仅搜索教育、多邻国相关的内容
以下是与教育、多邻国相关的实践案例推荐: 张翼然:用 AI 为教师减负(3H) 教师的 AI 减负指南生成式人工智能在教学中的应用 教师使用 AI 小技巧 想让 AI 做好,首先你得会做 教学目标:是否明确,与课程标准和学生实际需求相符合 教学方法:是否使用多种,考虑学生不同学习风格 能力培养:是否注重培养学生的思维、创新和实践能力 教学实践 教案中的教学过程是否紧密结合学生现实生活和个人经验 群里“公开问”创造良好探究学习气氛,提问技巧可见的快速提高 是否充分利用课堂时间,让学生参与教学 是否在教学中关注学生反馈和理解,及时调整教学策略 师生关系 是否营造良好教学氛围和师生关系 是否平等尊重学生主体地位,体现尊重和关爱学生的教育理念 是否注重发挥学生积极性和主动性,激发学习热情 移动教学应用: 多邻国 六六写字 幕布 “遇见苏轼”项目式教学 在教育实践中,针对二年级学生对于抽象数学概念感到困惑的痛点问题,也有相关的探索和尝试。
2025-03-20
详细说明如何根据自己的想法设计 ai prompt
以下是关于根据自己的想法设计 AI prompt 的详细说明: 在生成式 AI 的世界中,“提示”指的是您提供给模型的输入文本。例如,您可以向模型提出问题或给予指令,模型会根据您构建提示的方式给出响应,所以您获得的答案很大程度上取决于您提出问题的方式。 提示设计是找出和设计最佳输入文本以获得所需响应的过程,这通常需要大量的实验和迭代。 示例:比如要生成一个去约书亚树国家公园露营旅行所需的物品清单,您可以提供指令“生成我去约书亚树国家公园露营旅行所需的物品清单”。 此外,还有零样本、一次性和少样本提示: 零样本提示:模型仅根据描述任务的提示执行任务,没有关于特定任务的额外数据。 一次性提示:模型根据任务的单个示例执行任务。 少样本提示:模型根据任务的少量示例执行任务。 结构化提示包含几个不同的组件:上下文、示例问题和示例答案。每次向模型发送请求时,上下文都会应用。 在设计 AI 原画,如使用 Nijijourney 5 进行二次元角色设计的 Prompt 时: 1. 提供具体的风格指示:在 Prompt 中明确角色风格,如可爱、酷炫、赛博朋克、蒸汽朋克等,可参考优秀作品并加入类似元素。 2. 保持 Prompt 简洁明了:避免混乱,明确描述角色外貌、服装、性格等特征,不要包含过多信息。 3. 设置适当的细节和限制:根据需求设定角色的年龄范围、职业背景等。 4. 勇于尝试新颖的角色概念和风格:不拘泥于传统,提供新颖独特的角色概念和风格。
2025-03-19
有什么AI相关的笔记软件,既可以记录我的想法、灵感,然后AI也可以直接生成对我所写内容的评价(如可以安抚情绪),并且这个笔记软件的检索功能很好用
以下是一些符合您需求的 AI 相关笔记软件: 1. Notion AI:https://www.notion.so/help/guides/category/ai?ref=indigox.me 随着大语言模型的流行,其在智能化方面表现出色。 2. Mem.ai:https://mem.ai/?ref=indigox.me 一款 AI 驱动的笔记工具。 3. Pile:https://udara.io/pile/ 开源且界面美观,助力日记撰写和记录,集成 OpenAI API,具有 AI 搜索和问题解答功能,保证安全隐私。项目源码:https://github.com/UdaraJay/Pile
2025-02-19
对于编程纯小白,如果我想使用cursor之类的AI软件进行编程,实现自己的一些想法,那么我需要具备哪些编程或者计算机方面的基础知识
对于编程纯小白,如果想使用 Cursor 之类的 AI 软件进行编程实现自己的想法,需要具备以下编程或计算机方面的基础知识: 1. 下载 Cursor:访问 https://www.cursor.com/ 进行下载。 2. 注册账号:可以使用自己的邮箱(如 google、github、163、qq 邮箱)直接登录,接受二维码登录。 3. 安装中文包插件。 4. 在设置中进行 Rule for AI 配置。 5. 清晰表达需求:例如做一个贪吃蛇游戏,在网页中玩。需要明确游戏的规则和逻辑,如游戏界面是在矩形网格上进行,玩家控制蛇的移动方向(上、下、左、右),游戏界面上会随机出现食物,蛇吃到食物身体增长,存在撞墙或撞自己的死亡条件,吃到食物可得分,游戏难度会递增,游戏结束时能看到得分等。 对于纯小白,如果需求远比 AI 直出的内容复杂,无法一次性直出,那就需要耐下性子,在 AI 的帮助下一步一步来,并在这个过程中学会一点点编程。
2025-02-08
我需要你给我生成一些提示词,我会给你我想的想法。《》以内的是想法。《我想写一篇影视解说的文案,写作的视角以我,第一人称的视角来写。想要风格偏幽默风趣一点,就像跟朋友在讲述一样,可以模仿鲁迅先生的手法。而且还想把影片的剧情内容写出来,从开篇到电影的结尾,如果有需要保留原片的地方,请把原片的画面场景以及时间段描述出来。要求这篇文案要附上我自己的内心独白,以此引人深思!请你深度思考后,在做答复!要求字数不少于5000字。》请问我该如何写提示词?请你整理好提示词后发给我
以下是为您生成的一些提示词,希望对您有所帮助: 影视解说文案提示词 1. 以第一人称幽默风趣的口吻,像与朋友讲述般,描绘影片从开篇到结尾的精彩剧情,融入自己的内心独白,模仿鲁迅先生的手法,展现独特的视角和深刻的思考。 2. 用轻松幽默的语言,以我的视角详述影片情节,穿插搞笑的评论和内心想法,借鉴鲁迅先生的讽刺技巧,使解说引人入胜。 3. 以亲切自然的叙述方式,如同与好友聊天,讲述影片故事,从开头至结束,结合鲁迅先生的文风,加入个人的情感起伏和独特见解。 DALL·E 相关提示词 1. 绘画:提及颜料种类、画布纹理和笔触形状/纹理(列表)。 2. 数字:注明使用的软件、阴影技术和多媒体方法(列表)。 3. 基于详细提示使用 DALL·E 3 生成图像,让创意鲜活起来,为提示的每个元素做出大胆有趣的选择。 4. 遵循提示指南,提出四个全新的简单概念,而非完整提示,从上次给出的建议中获取灵感。 请注意,默认方面比率为正方形(1:1),默认风格为摄影,包括相机设置、摄影类型和设备。同时,避免违反服务条款的词汇或概念,不侵犯版权,不使用暗示性或露骨的图像,强调符合 G 级评级的元素。
2025-02-06
我想利用国产的语言大模型,根据会议内容生成会议纪要。1-请给我推荐能够实现以上内容的国产大模型;2-我应该提供哪些信息给大模型,才能实现我的想法。
以下是为您推荐的能够根据会议内容生成会议纪要的国产大模型:文心一言、讯飞星火等。 为了实现您的想法,您应该提供给大模型以下信息: 1. 详细的会议内容,包括与会人员的发言、讨论的主题和重点等。 2. 明确您对会议纪要的格式和重点的要求,例如是否需要按照特定的结构进行整理,是否需要突出某些关键信息等。 3. 如有相关的背景资料或补充说明,也应一并提供,以便大模型更全面地理解会议内容。
2025-01-13
我是个外行,完全小白、没有编程基础。我有个初步的想法,做一个智能客服,来代替或者帮助我们行业的人工客服。那么,我应该从哪些知识开始学习、或者我自己能不能办到?
对于完全没有编程基础但想做智能客服的小白,以下是一些建议: 1. 先对 AI 有初步的了解,明确自己的需求和目标。 2. 学习一些基本的概念,比如什么是 AI、提示词工程等。 3. 可以参考他人的学习路径,例如以“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”等为关键词。 4. 要有耐心,在 AI 的帮助下一步一步来,并在这个过程中逐渐学习一些编程知识。 5. 避免追求“大而全”和完美主义,从小的功能和简单的应用开始,尽快让系统“跑起来”,获得实际使用的反馈,再不断改进。 同时,有一些成功的案例可供参考。比如有人从完全不懂代码和英语很差的状态,通过不断学习和实践,在公司中实现了智能客服从创建到应用的过程,还创建了多个智能体。但也要注意,现实中真正的应用往往有复杂的需求,不能完全依赖 AI 一次性搞定,需要自己不断努力和积累。
2024-12-23