Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai行业前沿技术突破

Answer

以下是关于 AI 行业前沿技术突破的相关内容:

2024 年,AI 模型在生物医学、气象预测等领域取得了重要突破。诺贝尔物理学奖和化学奖先后颁给了 AI,这不仅推动了机器学习的理论创新,还揭示了蛋白质折叠问题,标志着人工智能已成为一门科学学科和加速科学的工具。

在具体的技术应用方面:

  • 基于深度学习和 Transformer 架构的蛋白质结构预测模型 AlphaFold 3 能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,将为细胞功能解析、药物设计和生物科学的发展提供有力支持。
  • DeepMind 展示的新的实验生物学能力 AlphaProteo 是一种能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。
  • 生物学前沿模型的扩展方面,Meta 发布的 ESM3 是一种前沿多模态生成模型,它在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。

此外,在学习路径方面,偏向技术研究方向需要掌握数学基础(如线性代数、概率论、优化理论等)、机器学习基础(监督学习、无监督学习、强化学习等)、深度学习(神经网络、卷积网络、递归网络、注意力机制等)、自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等,还包括前沿领域如大模型、多模态 AI、自监督学习、小样本学习等以及科研实践。

偏向应用方向则需要具备编程基础(Python、C++等)、机器学习基础(监督学习、无监督学习等)、深度学习框架(TensorFlow、PyTorch 等),了解应用领域(自然语言处理、计算机视觉、推荐系统等)、数据处理(数据采集、清洗、特征工程等)、模型部署(模型优化、模型服务等),并进行行业实践。

AI 技术的发展历程大致为:早期阶段有专家系统、博弈论、机器学习初步理论;知识驱动时期有专家系统、知识表示、自动推理;统计学习时期有机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期有深度神经网络、卷积神经网络、循环神经网络等。

当前 AI 前沿技术点包括:

  • 大模型,如 GPT、PaLM 等。
  • 多模态 AI,如视觉-语言模型(CLIP、Stable Diffusion)、多模态融合。
  • 自监督学习,如自监督预训练、对比学习、掩码语言模型等。
  • 小样本学习,如元学习、一次学习、提示学习等。
  • 可解释 AI,包括模型可解释性、因果推理、符号推理等。
  • 机器人学,涉及强化学习、运动规划、人机交互等。
  • 量子 AI,包含量子机器学习、量子神经网络等。
  • AI 芯片和硬件加速。
Content generated by AI large model, please carefully verify (powered by aily)

References

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

[title]2024人工智能报告|一文迅速了解今年的AI界都发生了什么?[heading2]三、2024年AI模型在生物医学、气象预测等领域突破与应用最重要的突破是——在2024年,诺贝尔物理学奖和化学奖先后颁给AIAI不仅推动了机器学习的理论创新,还揭示了蛋白质折叠问题。其标志了人工智能AI已经真正成为一门科学学科和加速科学的工具。AI在生物医学气象等突破应用有哪些?基于深度学习和Transformer架构的蛋白质结构预测模型——AlphaFold 3由DeepMind和Isomorphic Labs发布的AlphaFold 3是一个基于深度学习和Transformer架构的蛋白质结构预测模型,能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用。它的出现将为细胞功能解析、药物设计和生物科学的发展提供有力支持。DeepMind展示新的实验生物学能力——AlphaProteo其秘密蛋白质设计团队推出第一个模型AlphaProteo是一种能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。生物学前沿模型的扩展:进化规模ESM3自2019年以来,Meta一直在发布基于Transformer的语言模型(进化规模模型),这些模型是通过大型氨基酸和蛋白质数据库进行训练的。今年,他们发布了ESM3,这是一种前沿多模态生成模型,它是在蛋白质序列、结构和功能上进行训练的,而不是仅仅在序列上进行训练。与传统的掩码语言建模不同,ESM3的训练过程使用可变掩码计划,使模型暴露于各种掩码序列、结构和功能的组合。ESM3能够学习预测任何模态组合的完成情况。学习设计人类基因组编辑器的语言模型——CRISPR-Cas图谱

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.数学基础:线性代数、概率论、优化理论等2.机器学习基础:监督学习、无监督学习、强化学习等3.深度学习:神经网络、卷积网络、递归网络、注意力机制等4.自然语言处理:语言模型、文本分类、机器翻译等5.计算机视觉:图像分类、目标检测、语义分割等6.前沿领域:大模型、多模态AI、自监督学习、小样本学习等7.科研实践:论文阅读、模型实现、实验设计等[heading3]偏向应用方向[content]1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

Others are asking
AI相关的最前沿技术网站
以下是一些 AI 相关的前沿技术网站: 1. OpenAI:提供了诸如 GPT 等先进的语言模型和相关技术。 2. Google AI:涵盖了多种 AI 领域的研究成果和应用。 3. Microsoft Research:在 AI 方面有众多创新研究和技术展示。 此外,WaytoAGI 也是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。在没有任何推广的情况下,WaytoAGI 两年时间已有超过 300 万用户和超千万次的访问量,其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝等。
2025-04-15
AI领域最前沿技术的最核心的论文
以下是为您整理的关于 AI 领域最前沿技术核心论文的相关内容: 1. 《Attention is All You Need》:这篇由 Google Brain 团队撰写的论文介绍了 Transformer 架构,彻底改变了 AI 领域的格局。它能够处理未标记的、混乱的数据,并且比以前的方法更加高效。 2. 杰弗里·辛顿(Geoffrey E. Hinton)的相关论文: 描述极化子的“The Contribution of Excitons to the Complex Dielectric Constant of Crystals”(1958 年)。 描述长程电子转移量子力学的“Electron transfer between biological molecules by thermally activated tunneling”(1974 年)。 “Kinetic Proofreading:1974 年)。 “神经网络和具有突发性集体计算能力的物理系统”(1982 年)(被称为 Hopfield 网络)。 与 D.W.Tank 合著的“优化问题中决策的神经计算”(1985 年)。 在这篇文章中,作者分享了一份用于更深入了解现代 AI 的精选资源列表,称其为“AI 典藏”。这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。同时,还介绍了 AI 技术的发展历程,如 2015 年 AI 系统的局限性,以及 Transformer 架构出现后为 OpenAI 发展带来的影响。
2024-12-19
ai绘画的最前沿技术以及效果
AI 绘画的最前沿技术及效果包括以下方面: 技术融合:将艺术与先进的机器学习、深度学习等技术完美结合,如利用卷积神经网络等算法模拟人类创作过程。 打破局限:不再局限于传统手工绘画技巧,通过编程、算法和数据分析等开拓全新创作领域,为艺术家提供灵感,为缺乏绘画技巧的人提供创作机会,使艺术更具民主化和包容性。 效果提升:能够生成更加复杂、逼真和富有创意的图像,涵盖各种风格和题材,从写实到抽象,从风景到人物。 应用广泛:在广告设计、游戏开发、影视制作、建筑设计等领域发挥作用,可快速生成创意概念图、创建场景和角色形象、辅助特效场景和概念设计、帮助构想建筑外观和内部布局等。 色彩与情感表达:着色画通过色彩的丰富性、情感表达、细节和纹理的突出以及创意发挥,增加作品的表现力和独特性。 关键词结构思路:包括基础描述、风格指定、色彩要求和细节强调等方面。 进阶玩法:如使用 MJ 的 Retexture 功能或即梦参考功能,通过写提示词或垫图功能给着色画上色。
2024-12-03
帮忙生写最近人工智能领域的前沿技术新闻简报
以下是最近人工智能领域的前沿技术新闻简报: 1. Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位,详情可访问: 2. Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作,包括提取相关数据、操作新功能或创建报告,详情可访问: 3. Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能,详情可访问: 4. OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展,详情可访问: 5. Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器,详情可访问:
2024-10-14
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
大模型技术突破
大模型技术在以下方面取得了突破: 1. 语言翻译方面: 突破了传统翻译模型的局限,大幅提升了翻译质量,为翻译技术的广泛应用带来机遇。 能够通过深度的上下文分析,理解语言背后的真正含义,适应不同语境,避免词不达意、语境脱节的问题,精准捕捉并传达原文意图,尤其在处理隐喻、习语或文化特征的文本时表现出色。 能生成更加流畅、自然且地道的翻译,接近母语水平,保持原文的语言风格和情感色彩,更具亲和力和感染力。 具有强大的适应性,能够根据不同的翻译场景灵活调整策略,在多场景翻译中表现得更具灵活性和精准度。 能够深入理解语言背后的文化内涵,避免因文化差异导致的误解或偏差,在专业领域能提供更加专业且符合行业标准的翻译结果。 2. 在 OpenAI o1 方面: 带来了自我反思与错误修正能力,能意识到之前犯错并自动进行修正,对于长链条思考及解决复杂任务非常重要,相当于越过了锁住大模型能力的很高的门槛。
2025-04-14
2025年4月以来有什么突破性的ai技术?
以下是 2025 年 4 月以来的一些突破性 AI 技术及相关进展: 在图片和超短视频的精细操控方面,包括表情、细致动作以及视频与文字的匹配有了新的突破。 有一定操控能力的生成式短视频在风格化和动漫风方面最先成熟,真人风格稍晚。 AI 音频能力有长足进展,带感情的 AI 配音基本成熟。 “全真 AI 颜值网红”出现,可以稳定输出视频并直播带货。 游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。 AI 男/女朋友聊天基本成熟,在记忆方面有明显突破,能较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈。 实时生成的内容开始在社交媒体内容、广告中出现。 AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。 2025 年 4 月的具体进展包括: 真格基金的戴雨森认为,AI 时代即将迎来各行业的“李世石时刻”。OpenAI 的 o1 和 DeepSeek 的 R1 模型分别在后训练和开源创新方面展现了强大潜力,推动了强化学习的应用。 马斯克在最新演讲中警告 AI 可能只是为取悦企业而非追求真相,并强调教育中 AI 的个性化应用将深远影响学习。他预测特斯拉 Robotaxi 将在 6 月实现完全自动驾驶,同时期待神经连接技术能帮助失明者重见光明。 此外,《人工智能指数报告 2025》(AI Index Report 2025)由斯坦福大学人工智能研究院(HAI)发布,报告涵盖了 AI 在技术性能、经济影响、政策治理、教育、公众舆论、科学与医学等多个维度的最新进展。关键发现包括:AI 技术性能持续突破,在新设立的高难度基准测试上表现大幅提升;AI 日益融入日常生活,如 FDA 批准的 AI 医疗设备增多,自动驾驶服务扩展;企业全面拥抱 AI,美国私营 AI 投资增加,使用 AI 的企业比例上升;中美 AI 竞争加剧,美国主导 AI 模型数量,中国模型在质量上迅速追赶;负责任 AI(RAI)发展不均。报告地址:https://hai.stanford.edu/aiindex/2025aiindexreport 。
2025-04-13
人工智能生成内容(AIGC)的突破、对齐及产业培育,感悟
以下是关于人工智能生成内容(AIGC)的突破、对齐及产业培育的感悟: 一、原理与概念 1. 人工智能(AI):是一种目标,让机器展现智慧,简称 AI。 2. 生成式人工智能(GenAI):目标是让机器产生复杂有结构的内容,简称 GenAI。 3. 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 4. 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因有很多层所以叫深度),神经网络可用于多种学习方式。 5. 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。 6. ChatGPT:是 AIGC 技术的一个应用实例,是美国 OpenAI 公司开发的基于大型语言模型的对话机器人,能根据用户输入生成连贯且相关的文本回复。 二、AIGC 的特点与应用 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 三、相关概念的关系与区别 AGI、GenAI、AIGC 几个概念有所区别与联系,具体可参考相关图示。更多概念可问 Kimi、通义千问、文心一言等大模型。 四、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-03-01
突破deepseek r1
DeepSeek R1 是一款具有震撼性突破的 AI 模型,由一家纯粹的中国公司开发。其突破之处包括: 1. 强大:具有比肩 O1 的推理能力,暂时无出其右。 2. 便宜:参数少,训练开销与使用费用大幅降低。 3. 开源:任何人都可自行下载与部署,提供论文详细说明训练步骤与窍门,还有可运行在手机上的 mini 模型。 4. 免费:官方提供的服务完全免费,任何人随时随地可用。 5. 联网:是暂时唯一支持联网搜索的推理模型(O1 尚不支持)。 6. 本土:由没有海外经历甚至没有资深从业经验的本土团队开发完成。 如果您看到相关信息,您可以采取以下行动: 1. 直接访问网页链接或使用移动 APP 马上用起来。 2. 使劲用、疯狂用,尝试用它基本取代传统搜索,把各种需要请教的问题都拿去问它。 3. 去看看别人是怎么用的,试试其他大模型,了解 AI 擅长和不擅长的方面,以及如何调教,继续解锁与迭代属于自己的用法与更多工具。 获取字节火山 DeepSeek 系列 API 的完整教程及使用方法如下: 1. 2 月 14 日 8 点直播进行中:火山引擎解决方案专家带大家在 Coze 搭建满血版 R1 bot,直播结束可看回放:。 2. 学习文档:。 3. 模板更新了: 可以复制。 使用时的注意事项: 如果发布到公共空间,其他人用的是您的 API,要注意 Token 消耗(也可以设置成仅自己使用)。如果想搭建联网及复杂的工作流,可以看完整搭建教程:。创建账号时,如果是普通账号,请自行升级或注册专业号后使用。创建智能体时,点击创建,先完成一个智能体的创建。如果在最上面的教程里已经创建好自己的推理点,那么直接在 Bot 编排里就可以直接看到和选择创建好的推理模型,测试可用后直接发布。
2025-02-23
近6个月ai有什么较大的突破
在近 6 个月,AI 有以下较大的突破: 1. 在人工智能行业,过去 12 个月里流量增长显著。从 2022 年 9 月到 2023 年 8 月,研究的工具访问量从 2.418 亿次增长到 28 亿次,增长了 10.7 倍。其中,最近 6 个月每月平均流量为 33 亿。这一飞跃从去年 11 月 ChatGPT 成为最快达到 100 万用户的平台开始,2023 年 5 月达到峰值约 41 亿。 2. 在医疗保健领域,尽管像 ChatGPT 等产品反映的技术突破显著,但也强调了其不足。例如 GPT4 在美国医学执照考试中超过及格分数 20 分,但在各方面表现并非都出色。 3. 企业对生成式 AI 的资源配置和态度发生显著变化。过去几个月,企业对生成式 AI 的预算几乎增加两倍,更多应用部署在较小的开源模型上,更多业务从早期实验转移到生产环境中。
2025-01-20
通用人工智能技术取得显著突破,中美竞争加剧
以下是为您整理的相关内容: 2024 年 7 月 1 日: 微软 AI CEO Mustafa Suleyman 在阿斯彭思想节上表示,AI 的发展将持续对社会产生深远影响。他强调中美在技术竞争中应该寻求合作,而不仅仅是竞争。在谈到监管时,他认为监管并非邪恶,历史上技术都曾被成功监管。对于 AGI(通用人工智能),他认为应该认真对待与之相关的安全风险,并建立全球治理机制。 小伙伴整理了关于阿里 D20 的 PPT,内容主要是 AI 在设计、教育、出海方向上的内容。 举办了 AI 切磋大会,共 12 地小伙伴线下参与,一起 AI 出图、出视频、做音乐等,动手实践,享受创造的乐趣,目标是让每个人都能玩转 AI。 2024 年 11 月 6 日: 李开复在采访中表达了对 AGI(通用人工智能)霸权的担忧,指出如果美国形成 AGI 垄断,将对全球科技生态产生深远影响。他认为,中国在研发廉价模型和推理引擎方面具备优势,尽管技术上可能落后,但在应用和落地速度上可与美国竞争。他强调,追求 AGI 的同时,中国应寻找另一条生态护城河的发展路径,确保多样化应用和更广泛的市场参与。 作者艾木三号提到,Geoffrey Hinton 强调词嵌入是理解自然语言的关键,通过将文字符号转化为向量,模型能进行有效的信息编码和推理。类比能力使得模型能够发现不同事物间的共同结构,从而展现创造力。
2025-01-14
想要学习AIGC,推荐下相关的行业大V
以下是一些 AIGC 相关的行业大 V 推荐: :归臧整理的 AIGC 周刊,关注 AI 的朋友每周必读。 :连续创业者,Prompt 版块共建者。 。 :“互联网的那点事”,微博互联网观察家。 ZHO:建筑师|ComfyUI 设计师。 :AIGC 社区野神殿创始人。 。 赛博禅心:最新最快的 AI 资讯,作者大聪明。 张蔚:华兴资本经理,架构和投资版块共建者。 :热爱分享,永远好奇,AI 高质量社群组织者。 汗青:产品经理|AI 设计师。 此外,还有北京分队中的一些相关人士: Lucky:在信息技术领域公司任职 7 年+,目前担任江西 5 家公司企业级 information security 管理,3 个地区千万级企业级 confidentiality Project 管理,5 个地区上海、合肥、苏州、南京、深圳 information security 体系建设管理顾问,目前一只 20 人+AI 项目团队,终身学习践行者。能提供 AI 相关技术的所有项目,包括 AI 图片视频、2D 动画视频、AI prompt、AI 提示词企业培训、AI 大模型、AI agent、数字人等产品。坐标南昌。 粉仔:目前抖音上的 AIGC 相关博主,粉丝画像特别受到中老年妇女们的喜爱,俨然成了她们的偶像。熟悉目前主流的 AIGC 工具。坐标北京。 sam:做技术行业,热爱互联网和 AI 技术。 海地老师:AI 影视共创社北京分社的负责人。逍遥游的制片人和编剧。 Sunkim:自由体验设计师,前保利威设计负责人,先后在新浪、百度、脉脉做体验设计工作。对 AIGC 感兴趣,目前在做 AI 口语教育类产品(上线了),和 web3 相关设计,以及跟大伙学习 AI 视频制作。 胡凯翔:国企工作 10 余年,后沉迷 AI 提示词研究编写,小七姐第一期课程毕业生,微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册,使用 AI 辅助阅读和开智,标书、论文的写作,玄学取名和头像设计,目前沉迷个人知识体系的搭建和离谱村系列视频的共创。 陈皓/Robin:目前在家科技公司从事产品工作,主要和 Ai,3D 视觉内容+数字人相关;有过知识付费和海外教育的创业经历。
2025-04-14
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13
零基础如何学习AI从而进入AI行业
对于零基础想要学习 AI 从而进入 AI 行业的人,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI 可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-04-12
有AI在各个行业的案例吗
以下是 AI 在各个行业的一些应用案例: 汽车行业: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 2. 车辆安全系统:AI 用于增强自动紧急制动、车道保持辅助和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 其他行业: 1. 企业运营:包括日常办公文档材料撰写整理、营销对话机器人、市场分析和销售策略咨询等。 2. 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 3. 游戏/媒体:定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 4. 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 5. 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2025-04-12
ai音乐的行业研究报告
以下是为您提供的关于 AI 音乐的行业研究报告相关内容: 量子位智库发布的《AI 音乐应用产业报告(2024 年)》指出,AI 音乐生成技术通过学习大量音乐数据,已能创作出具有一定艺术性的音乐作品。技术发展迅速,音频模型尤其受到关注,因其能直接生成流畅自然的音乐。AI 音乐简化了音乐制作流程,为音乐产业带来变革。流媒体平台可能成为商业化的最大受益者,而传统音乐工程可能面临冲击。数据和情感表达的精准把控是技术迭代和商业化的关键。报告还提到,AI 音乐生成产品如 Suno 和 Udio 等,正在推动“人人皆可创作”的时代,同时面临技术、音乐属性和商业化等方面的挑战。 《专访 Luma AI 首席科学家:我们更相信多模态的 Scaling Law》中,Luma AI 首席科学家 Jiaming Song 在访谈中介绍了他们新推出的视频生成模型 Dream Machine。该模型旨在通过提升动作幅度来改善用户体验,以满足市场对视频生成的需求。Luma 的转型从 3D 生成到视频生成,是为了实现更高维度的 4D 表现,视频被视为实现更好 3D 效果的有效途径。Jiaming 指出,视频生成模型具备强大的 3D 一致性和光学效果,能够直接将图像转化为视频,再进一步转换为 3D 模型。 AI 音乐|2.21 资讯中,包含生成式人工智能对音乐领域的影响研究、谷歌推出 MusicRL:生成符合人类偏好的音乐、使用 Beatoven AI 的文生音乐功能给视频配乐、HyperGANStrument:使用音高不变超网络进行乐器声音合成和编辑、Stability AI 发布 Stable Audio AudioSparx 1.0 音乐模型等内容。 2024 年度 AI 十大趋势报告中提到,AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。AI 生成音乐作为音乐资产在游戏制作和发行环节使用都是非常可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。同时,AI 还能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,许多充满灵感的开发者正在尝试将 AI 作为游戏玩法的一环,促进游戏产业变革。 相关报告链接: 《AI 音乐应用产业报告(2024 年)》:https://waytoagi.feishu.cn/record/YoicrOScreZ7scct1Z3ciDM7nAd 生成式人工智能对音乐领域的影响研究报告:https://www.gema.de/documents/d/guest/gemasacemgoldmediaaiandmusicpdf
2025-04-11
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10