Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

perplexity公司

Answer

Perplexity 是一家专注于开发新一代 AI 搜索引擎的公司,创立于 2022 年 8 月,由前 OpenAI 研究科学家 Aravind Srinivas 与前 Meta 研究科学家 Denis Yarats(Perplexity CTO)等合伙人共同创办。

其优势包括:

  1. 理解能力强:能够深入理解查询的语义,而非仅仅匹配关键词,提供更准确和相关的结果。
  2. 生成式回答:可以生成通顺的自然语言回答,而非简单返回网页链接和片段,使结果更易于理解和使用。
  3. 个性化和上下文感知:能根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。

劣势有:

  1. 训练成本高:训练大型 LLM 模型需要大量计算资源和高质量训练数据,成本较高。
  2. 可解释性差:LLM 的工作原理较为黑箱,难以解释为何给出某个结果,缺乏透明度。
  3. 潜在的偏差和不当内容:由于训练数据的局限性,可能产生偏见或不当内容。

独特之处在于将 LLM 技术应用于搜索引擎领域,试图颠覆传统基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验,还融合了个性化和上下文感知等功能,努力成为新一代的“智能助手”。

在成立的 18 个月内,Perplexity 达到了 10 亿美元估值。但它与其他由 LLM 驱动的服务一样面临着幻觉问题等挑战,同时人工智能驱动的搜索也存在可靠性问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

大型科技公司正在试图在自己和初创企业之间划清界限,微软和苹果自愿放弃了OpenAI董事会观察员席位。监管机构特别关注了OpenAI与微软之间的密切关系,以及Anthropic与谷歌和亚马逊的关系。监管机构担心,大型科技公司要么是实质上收购了竞争对手,要么是在为他们投资的公司提供友好的服务协议。人工智能驱动的搜索开始出现成效,但同时存在一些问题在成立的18个月内,AI搜索公司Perplexity达到了10亿美元估值,谷歌也不断在迭代更新Gemini的能力,但这两种服务都遇到了可靠性问题。Gemini被发现使用讽刺性Reddit发帖作为建议来源,例如:建议用户每天吃一块石头,而Perplexity则与其他由LLM驱动的服务所面临的相同幻觉问题作斗争。OpenAI已经开始测试原型搜索功能——SearchGPT,最终将集成到ChatGPT中。虽然我们还不知道技术细节,但宣传图片暗示了类似于Perplexity的用户体验。

问:Perplexity AI 如何?

Perplexity AI是一家专注于开发新一代AI搜索引擎的公司,创立于2022年8月,由前OpenAI研究科学家Aravind Srinivas与前Meta研究科学家Denis Yarats(Perplexity CTO)等合伙人共同创办。它的搜索引擎采用了大型语言模型(LLM)技术,可以更好地理解和回答用户的自然语言查询。优势理解能力强:Perplexity的LLM模型能够深入理解查询的语义,而不仅仅是匹配关键词,从而提供更准确和相关的结果。生成式回答:它可以生成通顺的自然语言回答,而不是简单返回网页链接和片段。这使得结果更易于理解和使用。个性化和上下文感知:Perplexity可以根据用户的历史查询和偏好来个性化结果,提供更加贴合需求的答复。劣势训练成本高:训练大型LLM模型需要大量的计算资源和高质量的训练数据,成本可能较高。可解释性差:LLM的工作原理较为黑箱,很难解释为什么会给出某个结果,缺乏透明度。潜在的偏差和不当内容:由于训练数据的局限性,LLM可能会产生偏见或不当内容。独特之处Perplexity将LLM技术应用于搜索引擎领域,试图颠覆传统的基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验。它还融合了个性化和上下文感知等功能,努力成为新一代的"智能助手"。总的来说,Perplexity凭借LLM的强大语义理解能力,为搜索引擎带来了新的可能性,但也面临着一些技术和伦理挑战。原问题:Perplexity AI如何?谁开发的?其优劣势是?有什么独特之处?

问:AI 搜索引擎

以下是一些推荐的AI搜索引擎:1.秘塔AI搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。2.Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式AI技术从各种来源收集信息并给出答案。3.360AI搜索:360公司推出的AI搜索引擎,通过AI分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。4.天工AI搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。5.Flowith:一款创新的AI交互式搜索和对话工具,基于节点式交互方式,支持多种AI模型和图像生成技术,提供插件系统和社区功能。6.Devv:面向程序员的AI搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。7.Phind:专为开发者设计的AI搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。这些AI搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。内容由AI大模型生成,请仔细甄别

Others are asking
Perplexity是谁做的
Perplexity 是由前 OpenAI 研究科学家 Aravind Srinivas 与前 Meta 研究科学家 Denis Yarats(Perplexity CTO)等合伙人共同创办的。它是一家专注于开发新一代 AI 搜索引擎的公司,创立于 2022 年 8 月。其搜索引擎采用了大型语言模型(LLM)技术,具有理解能力强、生成式回答、个性化和上下文感知等优势,但也存在训练成本高、可解释性差、潜在的偏差和不当内容等劣势。Perplexity 将 LLM 技术应用于搜索引擎领域,试图颠覆传统的基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验,还融合了个性化和上下文感知等功能。
2025-02-20
perplexity
Perplexity 是一个与自然语言处理相关的指标。 首先,文章提到作者因项目需要关注 transformer 相关进展,并计划从算法(包括 NLP、CV、多模态下的 transformer 网络结构)、训练(transformer 的分布式训练)、部署(transformer 的 tvm 量化与推理)五个方面介绍 transformer,本系列的第一篇侧重介绍 NLP 中常用的 perplexity 指标的含义。 文中会先从熟悉的 entropy 指标开始,逐步介绍针对自然语言的改进版 Ngram Entropy 指标,最后介绍 perplexity 指标。 关于 perplexity 指标是否越低越好,在 XLNet 论文中提到越低的 perplexity 可能会损害下游任务的精度,而在 RoBERTa 论文中则指出对于像 RoBERTa 这样 encoderonly 结果的网络,perplexity 越低在 NLU 任务表现就越好。因此,perplexity 是不错的引领性指标,但最终的判别标准还是得结合下游任务表现一起考察。 总的来说,Perplexity、CrossEntropy、Bits Per Character 都是围绕熵来刻画语言模型的信息量和复杂度。最后作者强烈推荐阅读《Evaluation Metrics for Language Modeling》,并表示自己刚上手 transformer 相关内容,难免有错,欢迎指正。如果想了解更多关于 transformer 的知识,可以关注作者。
2025-01-22
perplexity.ai这个东西是什么东西
Perplexity AI 是一家专注于开发新一代 AI 搜索引擎的公司,创立于 2022 年 8 月,由前 OpenAI 研究科学家 Aravind Srinivas 与前 Meta 研究科学家 Denis Yarats(Perplexity CTO)等合伙人共同创办。 其优势包括: 1. 理解能力强:能够深入理解查询的语义,而非仅仅匹配关键词,提供更准确和相关的结果。 2. 生成式回答:可以生成通顺的自然语言回答,而非简单返回网页链接和片段,使结果更易于理解和使用。 3. 个性化和上下文感知:能根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。 劣势有: 1. 训练成本高:训练大型 LLM 模型需要大量计算资源和高质量训练数据,成本较高。 2. 可解释性差:LLM 的工作原理较为黑箱,难以解释为何给出某个结果,缺乏透明度。 3. 潜在的偏差和不当内容:由于训练数据的局限性,可能产生偏见或不当内容。 独特之处在于将 LLM 技术应用于搜索引擎领域,试图颠覆传统基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验,还融合了个性化和上下文感知等功能,努力成为新一代的“智能助手”。 此外,Perplexity AI 还是一款人工智能教育应用程序,允许用户将问题格式化为线程以便消化信息,可作为 Web 应用程序、Android 应用程序和 IOS 应用程序使用。有趣的是,其创始人曾在 Google AI 工作。
2024-11-28
我想找一个类似perplexity的AI工具
以下是一些类似 Perplexity 的 AI 工具: 1. ChatGPT Plus:用户可开启 web browsing 功能实现联网。 2. Bing Copilot:作为 AI 助手,旨在简化在线查询和浏览活动。 3. You.com 和 Neeva AI:搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 此外,在移动设备上,美图秀秀(https://apps.apple.com/us/app/meituphotoeditoraiart/id416048305)、SNOW(https://apps.apple.com/us/app/snowaiprofile/id1022267439)和 Adobe Express(https://apps.apple.com/us/app/adobeexpressaiphotovideo/id1051937863)也是相关的应用。Perplexity AI 是一款人工智能教育应用程序,可作为 Web 应用程序、Android 应用程序和 IOS 应用程序使用,其创始人曾在 Google AI 工作,于 2022 年 8 月创立该公司。它专注于提供简明、实时和准确的查询答案,并引用来源,在访问时长方面略胜于 ChatGPT,用户参与度很高。
2024-08-31
Perplexity的网站进不去
以下是关于 Perplexity 的一些信息: Perplexity 是一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术从各种来源收集信息并给出答案。以 Perplexity.AI 为例,我们可以利用其强大的搜索功能来获取信息。首先,访问该网站并使用其搜索功能。为了获得更专业和深入的搜索结果,可以启用 Pro 功能(搜索框右边的开关),该功能每天都会提供一定次数的免费使用。如果您经常使用,可以考虑开通会员服务以享受更多便利。但目前您提到 Perplexity 的网站进不去,可能是由于网络故障、服务器维护等原因导致的,您可以稍后再尝试访问。
2024-08-13
perplexity
Perplexity 是一款基于给搜索引擎加上 LLM 以带来更优信息检索体验的思路而开发的产品,其目标是取代 Google 搜索。该思路的技术实现并不复杂,贾扬清大佬用不到 500 行 Python 代码就实现了一个基础版。作者最近在 Coze 上体验手搓 AI Bot,也顺手搓了一个极简版的 Perplexity,只写了 36 行“粘合剂”代码和 41 行提示词。此外,Claude 官方文档中提到了处理幻觉的方法,包括允许 Claude 说“我不知道”、告诉 Claude 只有在非常确信回答正确时才回答问题、让 Claude 在回答问题之前“逐步思考”、在回答之前给 Claude 留出思考的空间、让 Claude 在长篇文档中找到相关引文并使用这些引用来回答等。
2024-06-21
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
runway的开发公司
Runway 是由一家总部位于旧金山的 AI 创业公司开发的。其在 2023 年初推出的 Gen2 代表了当前 AI 视频领域最前沿的模型。目前 Runway 支持在网页(https://runwayml.com/ )、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105s 视频),iOS 则有 200 多,两端额度貌似并不同步。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
运用ai,生成每日自动推送到飞书消息的 公司文化日报,包含日历 天气 新闻 内部规划 事项
要运用 AI 生成每日自动推送到飞书消息的公司文化日报,包含日历、天气、新闻、内部规划和事项,您可以考虑以下步骤: 首先,需要确定获取日历、天气、新闻、内部规划和事项等信息的数据源。对于日历,可以使用在线日历服务的 API 来获取相关数据;天气信息可以从专业的气象数据提供商获取;新闻可以通过新闻聚合 API 或者与特定的新闻机构合作获取;内部规划和事项则需要从公司内部的管理系统或数据库中提取。 然后,选择适合的 AI 技术和工具。例如,可以使用自然语言处理技术来对获取到的数据进行处理和整合,生成易于阅读和理解的文本内容。 在生成日报的过程中,要注意格式的规范和统一,使其具有良好的可读性。同时,可以根据公司的文化特点和需求,对内容进行个性化的定制和优化。 另外,为了确保推送的准确性和及时性,需要建立有效的监控和反馈机制,及时发现并解决可能出现的问题。 希望以上建议对您有所帮助。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14