Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

2024年生成式人工智能-海外合规白皮书

Answer

以下是为您找到的与 2024 年生成式人工智能相关的内容:

  • 《2024 年生成式人工智能-海外合规白皮书(东南亚篇)》由垦丁律师事务所联合 WEEE Consulting 和 Boosterhub 撰写,深入分析了东南亚地区生成式人工智能(AI)的产业现状、监管框架及合规要求。报告涵盖了新加坡、越南、泰国、马来西亚、印度尼西亚和菲律宾六国,探讨了 AI 产品合规性、数据本地化、跨境数据传输、内容安全和知识产权等关键问题。报告指出,尽管东南亚国家在 AI 发展上展现出潜力,但各国法规和伦理标准存在差异,对 AI 的法律监管和合规要求也各不相同。
  • 2024 年 8 月 26 日的《AIGC Weekly #86》,其中提到上周,Ideogram 推出功能强大的 2.0 图像生成模型,同时 Jamba 1.5 系列在非 Transformer 架构上取得突破。AI 工具如 ComfyUI 和 Cluade 更新,Cursor 获巨资融资。Google 的 Gemini AI 项目新增技术领导,亚马逊通过 AI 工具极大提升代码开发效率。

此外,还有其他一些相关研究报告,如:

  • 《爱分析:2024 智能办公厂商全景报告》强调智能办公系统在企业数字化转型中的关键作用。
  • 《平安证券:AI 系列深度报告(五)-AI 手机》指出 AI 手机的发展重心正逐步向端侧转移,全球出货量将呈现指数级增长。

关于 2024 年人工智能的报告还包括:

  • 2024 人工智能报告中提到,欧盟人工智能法案获得批准并正式生效,欧洲成为世界上第一个全面采用人工智能监管框架的地区。美国大型实验室努力应对欧洲监管,中国人工智能监管进入执行时代,美国对中国实施更严格的出口管制和投资限制。
  • 《生成式 AI 季度数据报告 2024 月 1-3 月》,作者为郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara ,报告包含总体流量概览、分类榜单等内容。

您可在知识星球下载其它一些研究报告:https://t.zsxq.com/18DnZxlrl 。公众号回复“2024 一季度”,可以获得《生成式 AI 季度数据报告 2024 月 1-3 月》的 PDF 。

Content generated by AI large model, please carefully verify (powered by aily)

References

4.4 历史更新

《[AIGC Weekly #86](https://waytoagi.feishu.cn/wiki/SuTlwwikjiFOlakUUltcVxuEnBx)》歸藏的新一期AIGC周刊,上周,Ideogram推出功能强大的2.0图像生成模型,同时Jamba 1.5系列在非Transformer架构上取得突破。AI工具如ComfyUI和Cluade更新,Cursor获巨资融资。Google的Gemini AI项目新增技术领导,亚马逊通过AI工具极大提升代码开发效率。《[2024年生成式人工智能-海外合规白皮书(东南亚篇)](https://waytoagi.feishu.cn/record/UsuQrwMRxelRhMc0A5GceQ3tnUb)》由垦丁律师事务所联合WEEE Consulting和Boosterhub撰写,深入分析了东南亚地区生成式人工智能(AI)的产业现状、监管框架及合规要求。报告涵盖了新加坡、越南、泰国、马来西亚、印度尼西亚和菲律宾六国,探讨了AI产品合规性、数据本地化、跨境数据传输、内容安全和知识产权等关键问题。报告指出,尽管东南亚国家在AI发展上展现出潜力,但各国法规和伦理标准存在差异,对AI的法律监管和合规要求也各不相同其它一些研究报告,也[可在知识星球下载](https://t.zsxq.com/18DnZxlrl):《[爱分析:2024智能办公厂商全景报告](https://waytoagi.feishu.cn/record/MaQfrsR87eVIwacV7tacnTdCnpe)》强调智能办公系统在企业数字化转型中的关键作用。《[平安证券:AI系列深度报告(五)-AI手机](https://waytoagi.feishu.cn/record/LerwrVHTme30Dgc3mIPc4quAnAb)》AI手机的发展重心正逐步向端侧转移,全球出货量将呈现指数级增长。

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

《欧盟人工智能法案》获得批准,正式生效随着该法案的通过,**欧洲成为世界上第一个全面采用人工智能监管框架的地区。**执行将分阶段进行,对“不可接受的风险”(例如欺骗、社会评分)的禁令将于2025年2月生效。美国大型实验室努力应对欧洲监管欧盟人工智能法案和长期以来的《通用数据保护条例》(GDPR)对隐私和数据传输的要求相结合,使美国实验室难以适应其服务。Anthropic的Claude在2024年5月之前才向欧洲用户开放使用,而Meta不会为欧洲客户提供多模态模型。与此同时,苹果公司正在反对欧盟的数字市场法案,声称其互操作性要求与它在隐私和安全方面的立场不兼容。因此,苹果公司推迟了在欧洲推出Apple Intelligence。中国人工智能监管进入执行时代我国是第一个开始制定生成式人工智能监管框架的国家,从2022年开始陆续出台全面指南,如今审查机构现在正在介入。我国持续生产SOTA模型,由国家互联网信息办公室监督。政府希望模型同时避免给政治问题提供“错误”的答案,在发布模型之前,必须提交其模型进行测试,以校准拒绝率。虽然禁止Hugging Face等国外网站访问,但官方批准的“主流价值观语料库”可以作为训练数据源。美国对中国实施更严格的出口管制和投资限制美国商务部发出了信函,要求美国制造商停止向我国半导体制造商进行最先进设施的销售。不仅如此,美国正在采取措施阻止或限制(包括半导体、国防、监控和音频、图像和视频识别)的中国初创企业的投资。美国不仅禁止了某些物品的出口,还在限制期限前向国际合作伙伴施压。这影响到了NVIDIA、Intel和ASML。

生成式AI季度数据报告_2024Q1.pdf

作者:郎瀚威Will,张蔚WeitoAGI,江志桐Clara 2024.5.3本产品保密并受到版权法保护Confidential and Protected by Copyright Lawsaiwatch.ai报告目录@FinanceYF5作者介绍及报告说明2总体流量概览10分类榜单18文字–个人生产力21文字–营销48文字–教育61文字–社交77创意–图像86创意–视频103音频大类119代码大类133Agent152B2B垂类158附件:重要榜单201作者介绍aiwatch.ai郎瀚威WillAI数据分析&出海社媒增长GPTDAO首席分析师数据准备,分类标准图谱准备张蔚WeitoAGI WaytoAGI创作者,某头部FAAI科技组。VX:WeitoAGI赛道辅助榜单评价分析、细分赛道变化分析江志桐Clara天际资本VC,AI软硬件应用公众号:天际科技投资赛道分析,竞争分析Top1分析公众号:郎瀚威Will公众号回复:2024一季度,可以获得本PDFaiwatch.ai报告写作目标和说明(1)的榜单,等等

Others are asking
浅谈“生成式人工智能在中职实训课的应用”
生成式人工智能在中职实训课的应用: 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,所生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如: 文档摘要:将长篇文章或报告总结为简短、精准的摘要。 信息提取:从大量数据中识别并提取关键信息。 代码生成:根据用户的描述自动编写代码。 营销活动创建:生成广告文案、设计图像等。 虚拟协助:例如智能聊天机器人、虚拟客服等。 呼叫中心机器人:能够处理客户的电话请求。 生成式人工智能的工作方式如下: 1. 训练阶段:通过从大量现有内容(文本、音频、视频等)中学习进行训练,训练的结果是一个“基础模型”。 2. 应用阶段:基础模型可以用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练,以解决特定问题,从而得到一个量身定制的新模型。 Google Cloud 提供了相关工具,如 Vertex AI 是端到端机器学习开发平台,旨在帮助开发人员构建、部署和管理机器学习模型;Generative AI Studio 允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少;Model Garden 是一个平台,可以让用户发现 Google 的基础和第三方开源模型,并与之交互,它提供了一组 MLOps 工具,用于自动化机器学习管道。 在教育领域,从 AI 助教到智慧学伴的应用探索中,以“移动教学与促动”课程实习周为例,让教育学专业的学生了解和尝试运用教育 APP、二维码、教育游戏等技术方式开展移动教学。课程实习需要在 5 天内让非技术背景的学生分组设计课程并展示,由于学生众多,教师难以给予个性化指导,而 AI 在一定程度上补足了学生缺乏的经验。
2025-03-31
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
生成式AI的教育重构价值
生成式 AI 在教育领域具有重要的重构价值,主要体现在以下几个方面: 1. 为教师减负:通过复杂的算法、模型和规则,从大规模数据集中学习,创造新的原创内容,帮助教师减轻工作负担。 2. 创新教学方式:例如让历史人物亲自授课,知识获取不再受时空限制,提高教育效率和质量,增强学生学习兴趣。 3. 个性化教育:根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,满足学生学习需求,提高学习成果,缓解教育资源不平等问题。 4. 角色多样化:授课教师、游戏玩家、情感伴侣等服务都可以被 AI 重构。 5. 促进学生成长:人工智能生成的虚拟角色可以作为数字陪伴,给予孩子社会奖励,促进其成长和提高学习成绩。
2025-03-22
Stable Diffusion、MidJourney、DALL·E 这些生成式AI工具有什么区别
Stable Diffusion、Midjourney 和 DALL·E 这三个生成式 AI 工具主要有以下区别: 1. 开源性:Stable Diffusion 是开源的,用户可以在任何高端计算机上运行。 2. 学习曲线:Midjourney 的学习曲线较低,只需键入特定的提示就能得到较好的结果。 3. 图像质量:Midjourney 被认为是 2023 年中期图像质量最好的系统。 4. 应用场景:Stable Diffusion 特别适合将 AI 与来自其他源的图像结合;Adobe Firefly 内置在各种 Adobe 产品中,但在质量方面落后于 DALL·E 和 Midjourney。 5. 训练数据:这些工具都是使用大量的内容数据集进行训练的,例如 Stable Diffusion 是在从网络上抓取的超过 50 亿的图像/标题对上进行训练的。 6. 所属公司:DALL·E 来自 OpenAI。 在使用方面: 1. Stable Diffusion 开始使用需要付出努力,因为要学会正确制作提示,但一旦掌握,能产生很好的结果。 2. DALL·E 已纳入 Bing(需使用创意模式)和 Bing 图像创建器,系统可靠,但图像质量比 Midjourney 差。 3. Midjourney 需要 Discord,使用时需键入特定格式的提示。
2025-03-20
生成式人工智能的提示词工程
生成式人工智能的提示词工程是一门新兴学科,在生成式 AI 模型中具有重要作用。 提示词是用户与模型沟通愿望的文本界面,适用于图像生成模型(如 DALLE3、Midjourney)和语言模型(如 GPT4、Gemini)等。它可以是简单的问题,也可以是复杂的任务,包括指令、问题、输入数据和示例,以引导 AI 的响应。 提示词工程的核心是制作能实现特定目标的最佳提示词,这不仅要指导模型,还需深刻理解模型的能力和局限性及所处上下文。例如,在图像生成模型中是对期望图像的详细描述,在语言模型中可能是复杂查询。 提示词工程不仅是构建提示词,还需结合领域知识、对 AI 模型的理解及系统化方法为不同情境定制提示词,可能包括创建可根据数据集或上下文程序化修改的模板。 此外,提示词工程是迭代和探索的过程,类似于传统软件工程实践,如版本控制和回归测试。该领域发展迅速,有潜力改变机器学习的某些方面。 在商业和社会中,提示词工程师是被炒作的职位,实际可能承担了机器学习工程师的部分职责。提示词工程是一切生成式 AI 的基础,不管用于学习、写作、绘画、编程还是玩音乐等。 在使用提示词时,要记住几个基本关键点: 1. 角色/身份:告诉 AI 它需要扮演的身份,提升其“职业素养”。 2. 目标/任务以及背景:所有对话都有目的性,要交代目标背后的逻辑,包括为什么要实现目标、希望达到的结果等。
2025-03-19
生成式AI
生成式 AI(Generative AI)是一种基于深度学习技术,利用机器学习算法从已有数据中学习并生成新的数据或内容的 AI 应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。 AIGC(AI generated content)意为人工智能生成内容,又称为生成式 AI。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。能进行 AIGC 的产品项目和媒介很多,包括语言文字类(如 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等)、语音声音类(如 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等)、图片美术类(如早期的 GEN、去年大热的扩散模型带火的 Midjourney、先驱者谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等)。 SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 国内目前主要是在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管 AIGC 行业。 Gen AI/Generative AI 是“生成式人工智能”正式称呼,是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 在 2022 年宣发时,OpenAI 称其是一种模型,但在官网的帮助页面中,称其是一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。
2025-03-19
2024年10月的AIPO活动相关云文档在哪儿?
以下是与 2024 年 10 月的 AIPO 活动相关的云文档: :包含关于 AI 模型训练的介绍与讲解,如 Eagle 插件批量收藏 3D 图表、不同步数训练时间、使用 MZ 数据集训练 Flux、云服务器训练流程、训练集收集要求、训练模型的时机、角色一致性表现、云服务器训练集设置、模型训练参数设置、模型训练启动与等待等内容。 》,列举了美国融资金额超过 1 亿美元的 AI 公司。 :包含 2024 年 10 月 24 日娜乌斯佳:AIGC 商业片落地经验分享等多个日期的智能纪要。
2025-03-28
AI生成PPT,介绍员工持股平台2024年的治理情况
很抱歉,目前知识库中没有关于使用 AI 生成介绍员工持股平台 2024 年治理情况 PPT 的相关内容。但我可以为您提供一些思路和建议来帮助您完成这个任务。 首先,您需要明确 PPT 的结构和主要内容板块。比如,可以包括员工持股平台的概述、2024 年的治理目标和策略、治理成果和关键数据、面临的挑战和解决方案、未来展望等。 在使用 AI 工具生成 PPT 时,您可以向工具清晰地描述每个板块的具体要求和重点内容。例如,对于治理成果板块,您可以要求 AI 突出显示关键的数据和图表,并进行简洁明了的解读。 同时,您还可以参考一些现有的优秀 PPT 模板和案例,以获取更多的灵感和设计思路。 希望这些建议对您有所帮助,如果您还有其他问题,请随时向我提问。
2025-03-22
2024 年值得关注的中文大模型全景图
2024 年,AI 大模型在生产和生活中落地速度迅猛,被称为国内大模型落地元年。以下是一些值得关注的情况: 国内大模型行业形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。 2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长,中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 在金融行业,百度以 14 个中标数量、3734.4 万元中标金额排名第一;科大讯飞居第二。 在智能终端行业,超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 百度表现突出,截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%。 2024 年 9 月 AI 行业大事记: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 9 月 14 日:人工智能生成合成内容标识办法;Jina AI 发布 ReaderLM、Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正在加速成为体系化之战。
2025-02-21
2024 年中国人工智能+产业规模
目前关于 2024 年中国人工智能+产业规模的相关信息如下: 国家统计局数据显示,2022 年全国研究与试验发展(R&D)经费投入总量首次超过 3 万亿元,达到 30782.9 亿元,比上年增加 2826.6 亿元,增长 10.1%,表明国家对科技创新和算力设施的重视和持续投入。我国算力设施产业链规模巨大,已达到万亿元级别。2022 年我国算力核心产业规模达到 1.8 万亿元,预计到 2023 年,中国算力产业规模将超过 3 万亿元。 在企业数量方面,截至 2024 年 3 月,全国算力存量企业共有 75,343 家。其中,广东省、北京市和江苏省的企业数量位居前三,分别有 10,315 家、7,167 家和 6,728 家。此外,人工智能企业数量也超过 4400 家。 德勤的报告指出,中国 AI 产业快速发展,得益于政策支持、经济增长和技术创新。成长型 AI 企业作为产业创新的重要力量,数量占比高达九成,活跃于各行业领域。预计到 2025 年,中国人工智能核心产业规模将突破 5000 亿元。 在影视行业,若假设 2027 年 AI 影视市场可以获得国内总市场份额的 10%,则国内 AI 影视总市场规模预计将达约 380 亿元以上;若假设 2030 年可以获得 25%以上市场份额,则国内 AI 影视总市场规模将达千亿级别。 营销行业或成生成式 AI 最早实现商业化落地的行业之一,未来,AI 技术还将持续推动营销行业的深刻变革。
2025-02-20
明略科技:2024年中国AI Agent行业研究
以下是关于 2024 年中国 AI Agent 行业的相关研究报告: 2024 年 9 月: 《》 《》 2024 年 8 月: 《》深入分析了 AI Agent 的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。 《》指出企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 2024 年 5 月: 《》提到 AI Agent 市场处于早期阶段,其商业价值在于提升工作均值、实现行业知识库构建、改变工作流程及生产关系。未来,AI Agent 将作为数字生产力,通过与工作流的结合,成为企业知识资产积累与复用的关键角色,推动技术革命。
2025-02-10
告诉我最新的国际ai资讯(比如从2024年有什么ai被发明了,国际上一共有什么大的ai公司,中国的ai发展的怎么样了(deepseek怎么样))
以下是为您整理的最新国际 AI 资讯: 2024 年 2 月 5 日:百度智能云成功点亮昆仑芯三代万卡集群,这是国内首个正式点亮的自研万卡集群。 在 Lex Fridman 的播客中,Dylan Patel 和 Nathan Lambert 深入探讨了中国的 DeepSeek AI 模型,特别是 DeepSeekV3 和 DeepSeekR1。Nathan 强调 DeepSeek 是最开放的模型之一,采用 MIT 许可,鼓励商业用途,推动行业走向开源。 2025 年 AI 语音助手研究显示,语音技术是 AI 应用的关键,企业和用户都将受益。2024 年将是语音助手快速发展的时期,技术不断升级,市场竞争加剧,涌现出多种创业公司。未来,AI 语音将成为服务的“万能钥匙”,应用场景广泛,从医疗到教育,推动行业变革与创新。 2024 年 1 月 17 日:随着预训练技术遭遇瓶颈,GPT5 迟迟未能问世,从业者开始从不同角度寻找突破。以 o1 为标志,大模型正式迈入“PostTraining”时代;开源发展迅猛,Llama 3.1 首次击败闭源模型;中国本土大模型 DeepSeek V3,在 GPT4o 发布仅 7 个月后,用 1/10 算力实现了几乎同等水平。同时,大模型的日渐成熟也让产业重心从基础模型转向应用落地。AI 在编程领域爆发,“数字员工”崛起。 李飞飞在访谈中探讨了 AI Agent 的发展及其未来。她强调 AI Agent 应作为工具和赋能者,而非主导者,确保人们的自主性。李飞飞回顾了 ImageNet 的创立背景,并提到正在推动的“空间智能”概念,旨在理解和融合物理与数字三维世界。她认为,未来这两者的界限将逐渐模糊,从而带来更大变革。
2025-02-08
企业级应用集成AI大模型架构白皮书
以下是关于企业级应用集成 AI 大模型架构的相关内容: 从整体分层的角度来看,目前大模型整体架构可以分为以下几层: 1. 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层:这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集。 3. 模型层:包括 LLm 或多模态模型。LLm 即 largelanguagemodel 大语言模型,例如 GPT,一般使用 transformer 算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,用户实际看到的地方。 此外,以下报告也涉及相关内容: 1. 量子位智库发布的《》概述了大模型技术在多个行业中的应用和发展趋势。强调大模型在编程、教育、医疗等领域的重要性,并预测其将推动生产力和创新服务的增长。大模型业务模式涵盖应用开发、模型 API 和模型服务,其中模型服务和 API 是核心。报告还讨论了大模型在不同地域和行业的落地情况,以及企业在大模型技术投资方面的需求。 2. 亿欧智库发布的《》聚焦于企业中人工智能大模型的应用和落地情况。报告涵盖了 AI 大模型在企业中的应用现状、发展趋势以及面临的挑战。它详细分析了 AI 技术如何推动企业创新、提高效率和降低成本,并探讨了不同行业如何利用 AI 大模型实现数字化转型。此外,白皮书还提供了关于如何克服实施过程中的障碍和最大化 AI 大模型价值的见解。 对于大模型 API,与大模型对话产品的提示词不同。对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,可以看到需要在请求中传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。可以构建相应的 API 请求内容,包括设定系统提示词定义基础任务、设定用户提示词提供具体任务数据并要求大模型按 JSON 格式返回生成结果等。如果缺少参数设定的经验,也可以先询问 AI 文本总结类的模型 API 请求,temperature 设定多少合适,再逐步调试效果即可。
2025-02-06
哪些工具擅长中文白皮书写作?
以下是一些在中文白皮书写作方面表现出色的工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,能精简和优化内容。 3. 研究和数据分析: Google Colab:提供云环境的 Jupyter 笔记本,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽非纯粹 AI 工具,但结合自动化和模板,能高效处理格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-10-31
生成式AI商业落地白皮书
以下是关于生成式 AI 商业落地的相关信息: 2024 年 7 月 29 日,《》由火山引擎、RollingAI 和 InfoQ 研究中心联合发布,为 CXO 提供 AI 转型战术指南。该白皮书分析了生成式 AI 在各行业的应用现状和挑战,并提供了企业 AI 转型的趋势展望和最佳实践。书中通过 240 个应用场景地图,展示了 AI 在消费零售、金融、汽车等行业的落地案例,探讨了 AI 基础设施构建、项目落地准备和快速补齐能力差距等关键问题,并提出了八步实施大模型接入的方法论。 其它相关报告: 《》 《》 《》 《》 《》 2024 年 8 月 17 日,最近上传的一些报告: 爱分析发布的《》聚焦于 AI Agent 开发管理平台市场,特别评估了火山引擎的 HiAgent 平台。报告指出,AI Agent 作为大模型应用的主流形态,正重塑科技和商业领域。 《》白皮书由 Denodo Technologies 发布,强调了生成式人工智能(Gen AI)在商业和财务价值实现中的潜力。书中指出,Gen AI 应用的可靠性依赖于数据质量,而数据管理是实施 AI 的关键挑战。 《》 《》 此外,关于游戏中的生成式 AI 革命:生成式 AI 是一种机器学习类别,计算机可以根据用户的提示生成原始的新内容。目前,文本和图像是这项技术的最成熟应用,但几乎在每一个创意领域都有工作在进行,从动画、音效、音乐,甚至到创造具有完整性格的虚拟角色。AI 在游戏中并不是新鲜事,早期游戏中的虚拟敌人只是简单脚本程序,不能学习,能力取决于程序员。现在由于更快的微处理器和云技术,有了更多计算能力,可以构建大型神经网络,在高度复杂领域识别模式和表示。这篇博文分为两部分,第一部分包括对游戏领域生成式 AI 的观察和预测,第二部分是对该领域的市场地图,概述各个细分市场并确定每个市场的关键公司。
2024-10-23
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10