Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

语言类大模型如何微调

Answer

语言类大模型的微调主要包括以下内容:

  • 传统微调:在通用数据集上预训练的模型,通过复制该模型,以学习到的权重为起点,在新的特定领域数据集上重新训练模型。但由于语言类大模型规模较大,更新每个权重可能需要很长时间的训练工作,且计算成本高,为模型提供服务也有麻烦和成本,所以可能不是最佳选择。
  • 参数有效调优:这是一种创新的调优方法,旨在通过仅训练一部分参数来减少微调的挑战。这些参数可能是现有模型参数的子集,也可以是一组全新的参数,例如向模型添加额外的层或额外的嵌入到提示。
  • 实际操作:在Generative AI Studio的语言部分选择调整,创建调整模型时提供名称,并指向训练数据的本地或Cloud Storage位置。参数有效调整适用于拥有“适度”数量训练数据的场景,训练数据应以文本到文本格式构建为受监督的训练数据集。

此外,大模型通俗来讲是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练过程类似上学参加工作,包括找学校(需要大量计算资源)、确定教材(需要大量数据)、找老师(选择算法)、就业指导(微调)、搬砖(推导)。在LLM中,Token被视为模型处理和生成的文本单位。

在Andrej Karpathy亲授的内容中,微调是根据问答文档进行训练,获得助理模型,该模型能以助手形式回答未包含在训练集中的问题,且能利用预训练阶段积累的知识。预训练阶段在互联网上大规模训练积累知识,微调阶段则是将格式转换为类似有用助手的问答形式。预训练成本高昂,通常只在公司内部进行。

Content generated by AI large model, please carefully verify (powered by aily)

References

9. 生成式 AI Studio 简介

12:29即使您确实为您的用例发现了一个好的提示,您可能会注意到模型响应的质量并不完全一致。为了缓解这些问题,我们可以做的一件事是调整模型。12:40那么调音是什么?好吧,您可能熟悉的一个版本是微调。在这种情况下,我们采用在通用数据集上预训练的模型。我们复制了这个模型。12:51然后,以这些学习到的权重为起点,我们在新的特定领域数据集上重新训练模型。这种技术对于许多不同的用例都非常有效。13:01但是当我们尝试微调LLM时,我们遇到了一些挑战。顾名思义,法学硕士是大型的。因此更新每个权重可能需要很长时间的训练工作。13:12将所有这些计算与现在必须为这个巨大模型提供服务的麻烦和成本相结合……因此,微调大型语言模型可能不是您的最佳选择。13:21但是有一种创新的调优方法称为参数有效调优。这是一个非常令人兴奋的研究领域,旨在通过仅训练一部分参数来减少微调LLM的挑战。13:34这些参数可能是现有模型参数的子集。或者它们可以是一组全新的参数。例如,也许您向模型添加了一些额外的层或额外的嵌入13:45到提示。如果您想了解更多关于参数有效调整和一些不同方法的信息,本课程的阅读列表中包含一篇摘要论文。13:53但如果您只想着手构建,那么让我们转到Generative AI Studio,看看如何开始调优工作。从Generative AI Studio的语言部分,14:02选择调整。为了创建一个调整模型,我们提供了一个名称。然后指向训练数据的本地或Cloud Storage位置。参数有效调整非常适合您拥有“适度”数量的场景14:14训练数据,例如数百或数千个训练示例。您的训练数据应以文本到文本格式构建为受监督的训练数据集。数据中的每条记录或行都将包含输入文本,换句话说,提示,

大模型入门指南

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID||-|-||The|345||cat|1256||sat|1726||…|…|

文章:Andrej Karpathy 亲授:大语言模型入门

因此,我们现在交换数据集,并根据这些问答文档进行训练。而这个过程就叫做微调。一旦你这样做了,你就获得了我们所说的助理模型。所以这个助理模型现在订阅了新的训练文档的形式。例如,如果你给它一个问题,比如,“你能帮我处理这段代码吗?好像有一个错误。print(“hello world).”尽管某个问题并未包含在训练集中,经过微调的模型仍然知道它应该以有助于解答此类问题的助手的形式进行回答,并且它能够做到这一点。因此,模型会从左至右、从上至下地逐字采样,生成的所有单词均是对该查询的响应。这些模型能够将其格式转变为当前有用的助手,这是一个值得关注的现象,同时也是一种基于经验的、尚未完全理解的现象。这是因为尽管它们在微调阶段已经接触到了大量相关文档,但它们仍能够访问并以某种方式利用在预训练阶段积累的全部知识。到目前为止的总结粗略来说,预训练阶段是在互联网上进行的大规模训练,主要关注知识的积累,而微调阶段则是关于所谓的对齐,即将互联网文档的格式转换为问答形式,类似于有用的助手。这两个阶段是获取像ChatGPT这样的模型的两个主要部分。在预训练阶段,你会从互联网上获取大量文本,并需要一个GPU集群来处理这些数据。这些专用于并行处理工作负载的计算机非常昂贵。然后,你将文本压缩到神经网络的参数中,这个过程通常需要数百万美元的成本。这样,你就得到了一个基础模型。由于计算成本极高,这个过程通常只在公司内部进行一次,可能是每年或几个月一次,因为实际操作成本非常高昂。

Others are asking
大模型就是指大语言模型吗?有哪些常见的非语言类大模型和小模型,两者的区别和联系是什么?
大模型并非仅指大语言模型。大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型存在以下区别: 1. 处理的信息类型不同:大型语言模型专注于文本信息,而大型多模态模型能处理多种信息类型。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,如文本翻译、生成、情感分析等;大型多模态模型可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型则需要多种类型数据。 当我们提到“小模型”时,是相对大型模型而言,规模较小。这些小模型通常是为完成特定任务而设计,比如最初用于图像分类,只能分辨是或不是某一个东西(如猫、狗)。 “小模型”在特定任务上表现出色,但“大模型”像多功能基础平台,能处理多种任务,应用范围广泛,拥有更多通识知识。 大模型并不拥有无限知识,其知识来源于训练过程中的有限数据,只能回答训练中见过或类似的问题,知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。 大型语言模型的运作机制主要是通过大量数据训练学习语言结构和模式,然后根据输入生成相应文本,类似于词语接龙游戏,永远在猜测下一个字符将要生成什么。
2025-03-16
图生图 / img2img:上传一张图片,然后系统会在这个图片的基础上生成一张新图片,修改一些提示词(Prompt)来改变新图片的效果 , 给我推荐这类大模型
以下为您推荐可用于图生图(img2img)的大模型: 1. Stable Diffusion(SD)模型:由 Stability AI 和 LAION 等公司共同开发,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。在图生图任务中,SD 模型会根据输入的文本提示,对输入图片进行重绘以更符合文本描述。输入的文本信息通过 CLIP Text Encoder 模型编码成机器能理解的数学信息,用于控制图像生成。 2. Adobe Firefly image 2 模型:上周发布了 Beta 测试版本,增加了众多功能,模型质量提升。默认图片分辨率为 20482048,对图片的控制能力增强,具有更高质量的图像和插图生成、自定义选项和改进的动态范围。支持生成匹配(img2img),应用预先选择的图像集中的风格或上传自己的风格参考图像以创建相似图像,还有照片设置、提示建议、提示链接共享、反向提示词等功能。
2025-02-12
学术类大模型
以下是关于学术类大模型的相关信息: 大模型商业化落地的现状: 在医疗行业,大模型的应用主要涵盖疾病的诊断与预测、药物研发以及个性化医疗三个方向。例如,2020 年麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin,研究者先构建由两千个性能已知分子组成的训练集来训练 AI,让其学习分子特点并总结规律,再对美国 FDA 已通过的六万多个分子进行分析,最终识别出符合要求的分子。目前很多医疗研究机构都在进行医疗大模型的开发研究,大模型在医疗领域潜力巨大。 什么是大模型: 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练、使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适算法讲述“书本”内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称为推导(infer)。 此外,清华大学计算机科学系的学生小 A(aaronxic)投稿了 Transformer 101 系列,从自身经验出发总结梳理新手友好的 transformer 入坑指南。其知乎个人主页:https://www.zhihu.com/people/aaronxic 。欢迎更多共建者一起投稿、充实知识库。
2024-08-09
热点的大模型微调蒸馏工具有哪些
以下是一些热点的大模型微调蒸馏工具: FLUX.1:包括 FLUX.1(可商用,为本地开发和个人使用定制,生成速度快,内存占用小,在 Apache 2.0 许可下公开提供,支持在 Replicate、fal.ai 和 Comfy UI 等平台使用,且支持用户根据自己数据集微调)。其训练参数高达 120 亿,在图像质量、提示词跟随等多方面超越流行模型,工作原理基于混合架构,结合变换器和扩散技术。 基于阿里云 PAI 平台:可复现 R1 蒸馏及蒸馏训练模型过程。部署 32b 的蒸馏模型展示效果,包括模型部署(如选中模型卡片后的操作、选择 vLLM 部署、涉及竞价系统等)、蒸馏数据获取(在本地 python 环境或 notebook gallery 建立实例执行代码获取蒸馏数据集)等。 DeepSeek:PaaS 平台支持多机分布式部署,满足推理性能要求,能一站式完成模型蒸馏。可登录 Pad 控制台通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价部署,部署后可在模型在线服务 EAS 查看状态。还介绍了模型 API 调用、服务关停、蒸馏概念、应用场景及部署实操等。
2025-04-13
deepseek v3微调
以下是关于 Deepseek V3 微调的相关信息: 云舒文章总结卡 2.0 提示词全面支持 Deepseek V3,效果媲美 Claude3.7。V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号。提示词复制链接:。横版为 1080 x 800 卡片提示词,竖版为 750 x 不限高卡片提示词。 各平台均需下载 html 文件,打开后才能查看真实效果,平台自带预览因兼容性问题无法正常展示效果。Claude 使用平台包括 Claude3.7 官网、API、Cursor,使用时需要下载为 HTML 文件打开查看效果。Deepseek 使用平台包括 Deepseek 官网、API(V3 需要为 0324 更新的版本),Deepseek 需要复制代码到 html 文件里,然后保存进行查看。 关于智能纪要,会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面。 北京时间 00:30 至 08:30 期间,DeepSeek API 价格大幅下调,DeepSeekV3 降至原价的 50%。
2025-04-12
有哪些针对CoT能力的微调工具
以下是一些针对 CoT 能力的微调工具: 1. Selfconsistency CoT:使用手动设计的 Prompt 生成采样一组不同的推理路径,再通过“多数投票”找到推理步骤中“最一致”的路径,使用这条解码路径驱动原始的贪心解码方式来提示 CoT 性能。 2. MMCoT:侧重使用微调方法嵌入 CoT,通过将语言和图像合并在一个包含推理生成与答案推理的两阶段的框架中,使用微调大模型赋予输入多模态 CoT 的能力。 3. GoTInput 方法:通过对 CoT 生成的思维图进行抽取构建三元组,并使用 GNN 将文本、图像与 CoT 统一,从而生成包含 CoT 信息的最终答案。 4. VCoT:解决了一个输出多模态的问题,通过以生成图片的“标题”以及识别核心关注点作为图像生成的启动过程,通过递归的方式填充图像信息,从而实现输出多模态。 此外,在将 DoT 扩展到预训练的扩散语言模型 Plaid 1B 并在更复杂的推理任务上进行评估时,自回归模型和扩散模型在使用 CoT 或 DoT 进行微调时都显示出显著提高的性能。在微调 Plaid 1B 时,也探索了几种替代方案。 在强化学习驱动的合成数据生成与模型优化流程中,也涉及到 CoT 的相关应用和优化,如初始 CoT 生成、CoT 存储等。
2025-04-12
本地部署大模型,如何微调建立本地知识库
以下是关于本地部署大模型并微调建立本地知识库的详细步骤: 一、使用 AnythingLLM 进行本地知识库搭建 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 二、张梦飞的全本地部署教程 1. 部署大语言模型 下载并安装 Ollama 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 下载 qwen2:0.5b 模型 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入,点击回车。 三、智能纪要中的相关内容 在智能纪要中,许键介绍了模型 API 调用方法与知识库创建,包括获取 API key 位置及调用设置,详细讲解了创建 Rag 应用(知识库)流程,如上传非结构化文件、数据解析、切分段落等操作,并回答了诸多问题。同时还涉及工作流创建、模型能力及相关问题的探讨,以及通义千问相关应用及明天课程安排交流等内容。 总之,本地部署大模型并建立本地知识库需要按照上述步骤进行操作和配置,同时不断实践和探索,以达到理想的效果。
2025-04-10
如何做 deepseek 微调
要进行 DeepSeek 微调,以下是一些相关的知识和步骤: 1. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 2. 本地部署介绍:如果拥有云服务器,可以进行本地部署,了解满血版本地部署的实际情况。 3. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 4. 平台服务差异:了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。 5. 对于微调的全过程,建议阅读 Unsloth 笔记本和 HuggingFace 的《如何微调开放式 LLMs》,也可以使用《如何在一小时内阅读论文》作为指南。 6. 更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948
2025-04-08
怎么本地部署ai模型,并进行微调
以下是本地部署 AI 模型并进行微调的主要步骤: 1. 选择合适的部署方式:包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源:确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础:可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练:根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型:将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护:大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,关于本地部署还有以下相关内容: 如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 会带着大家复现模型的蒸馏和微调,并讲解相关知识。 PaaS 平台支持多机分布式部署,满足推理性能要求,使用独占资源和专有网络,能一站式完成模型蒸馏。 登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 介绍了模型 API 的调用方法,包括查找位置、获取 token 等,强调使用后要及时停止或删除服务以避免持续付费。 总的来说,部署和训练自己的 AI 模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-03-27
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
用what,why,how,will,next,作为五个力量,用熵增熵减作为二进制,组成的底层语言用其中的next作为自主学习探索动力的自进化AI,潜力怎么样?
用 what、why、how、will、next 作为五个力量,以熵增熵减作为二进制,组成底层语言,并以其中的 next 作为自主学习探索动力的自进化 AI 具有一定的潜力,但也面临一些挑战。 从潜力方面来看,这种设计可能有助于 AI 系统更有针对性地进行自主学习和探索。例如,what 可以帮助明确要学习和理解的对象或概念;why 有助于挖掘背后的原因和逻辑,促进更深入的理解;how 能够指导实现目标的方法和步骤;will 可以对未来的发展进行预测和规划。而将 next 作为自主学习探索的动力,有可能推动 AI 不断开拓新的知识领域。 然而,也存在一些挑战。首先,熵增熵减作为二进制的基础,其在实际应用中的有效性和稳定性需要进一步验证和优化。其次,如何准确地定义和运用这五个力量,以及它们之间的协同关系,需要精细的设计和调试。再者,将这种复杂的底层语言转化为实际的算法和模型实现,具有较高的技术难度。 总之,这种自进化 AI 的概念具有创新性和潜力,但需要在理论和实践上进行深入的研究和探索,以充分发挥其优势并克服可能的问题。
2025-04-12
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
你都融合了哪些大语言模型?
以下是一些融合的大语言模型: 1. LuotuoChineseLLM: 地址: 简介:囊括一系列中文大语言模型开源项目,包含基于已有开源模型(ChatGLM、MOSS、LLaMA)进行二次微调的语言模型、指令微调数据集等。 2. Linly: 地址: 简介:提供中文对话模型 LinlyChatFlow、中文基础模型 LinlyChineseLLaMA 及其训练数据。中文基础模型以 LLaMA 为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了 LinlyChatFlow 对话模型。 3. ChatYuan: 地址: 简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 4. ChatRWKV: 地址: 简介:开源了一系列基于 RWKV 架构的 Chat 模型(包括英文和中文),发布了包括 Raven,NovelChnEng,NovelCh 与 NovelChnEngChnPro 等模型,可以直接闲聊及进行诗歌、小说等创作,包括 7B 和 14B 等规模的模型。 此外,还有以下相关信息: 1. 本地部署资讯问答机器人: Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 Ollama 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 Ollama 提供模型库,用户可从中下载不同模型,有不同参数和大小以满足需求和硬件条件,可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 Ollama 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 Ollama 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. AIGC 落地应用大全中的案例: Poe(强烈推荐): 推荐指数:????? 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性)。 此外支持分享用户和模型的对话内容。但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导真的能够启发到用户。 支持 Explore Chatbot,但丰富度不如后续要介绍的 Character。 midjourney prompt 扩写 Chatbot 能力很惊人。
2025-04-08
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
大语言模型能力排行榜
以下是一些大语言模型能力排行榜的相关信息: Open LLM Leaderboard: 地址: 简介:由HuggingFace组织的一个LLM评测榜单,目前已评估了较多主流的开源LLM模型。评估主要包括AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA四个数据集上的表现,主要以英文为主。 chinesellmbenchmark: 地址: 简介:中文大模型能力评测榜单,覆盖百度文心一言、chatgpt、阿里通义千问、讯飞星火、belle/chatglm6b等开源大模型,多维度能力评测。不仅提供能力评分排行榜,也提供所有模型的原始输出结果。 聊天机器人竞技场:由伯克利的一个团队管理,根据ELO评级对不同的语言模型进行排名,计算ELO的方式与国际象棋中的计算方式非常相似。 智源评测:豆包模型在其中表现出色,荣获大语言模型第一,视觉理解第二、文生图第二、文生视频第二,在匿名投票竞技场中排名第二,仅次于OpenAI。 地址:
2025-03-31
自然语言转换为sql
以下是关于自然语言转换为 SQL 的相关信息: DuckDBNSQL7B 模型能够将自然语言转换成 SQL 代码,使非专业用户能轻松与数据库交互,它基于大量真实和合成的 DuckDB SQL 查询训练。相关链接:https://github.com/NumbersStationAI/DuckDBNSQL 、https://x.com/xiaohuggg/status/1751081213459415164?s=20 Claude 官方提示词中有将日常语言变成 SQL 查询语句的相关内容。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有几个知名的 text2sql 项目,如 SQLNet(使用深度学习方法解决 text2sql 任务的项目)、Seq2SQL(将自然语言转换为 SQL 查询的序列到序列模型)、Spider(一个大规模的 text2sql 数据集及其相关的挑战)
2025-03-31