Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你都融合了哪些大语言模型?

Answer

以下是一些融合的大语言模型:

  1. Luotuo-Chinese-LLM:
    • 地址:https://github.com/LC1332/Luotuo-Chinese-LLM
    • 简介:囊括一系列中文大语言模型开源项目,包含基于已有开源模型(ChatGLM、MOSS、LLaMA)进行二次微调的语言模型、指令微调数据集等。
  2. Linly:
    • 地址:https://github.com/CVI-SZU/Linly
    • 简介:提供中文对话模型 Linly-ChatFlow、中文基础模型 Linly-Chinese-LLaMA 及其训练数据。中文基础模型以 LLaMA 为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了 Linly-ChatFlow 对话模型。
  3. ChatYuan:
    • 地址:https://github.com/clue-ai/ChatYuan
    • 简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。
  4. ChatRWKV:
    • 地址:https://github.com/BlinkDL/ChatRWKV
    • 简介:开源了一系列基于 RWKV 架构的 Chat 模型(包括英文和中文),发布了包括 Raven,Novel-ChnEng,Novel-Ch 与 Novel-ChnEng-ChnPro 等模型,可以直接闲聊及进行诗歌、小说等创作,包括 7B 和 14B 等规模的模型。

此外,还有以下相关信息:

  1. 本地部署资讯问答机器人:
    • Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。
    • Ollama 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。
    • Ollama 提供模型库,用户可从中下载不同模型,有不同参数和大小以满足需求和硬件条件,可通过 https://ollama.com/library 查找。
    • 用户可通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。
    • Ollama 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。
    • Ollama 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。
  2. AIGC 落地应用大全中的案例:
    • Poe(强烈推荐):
      • 推荐指数:?????
      • 由 Quora 开发,有 APP 版本,支持跨端使用。
      • 集成了 Chat GPT、GPT-4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。
      • 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。
      • Dragonfly 擅长给出较短回答,并擅长在输入中给出示例时遵循指示。
      • Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性)。
      • 此外支持分享用户和模型的对话内容。但 GPT-4、Claude+产品需要付费订阅使用。
      • 访问地址:https://poe.com/
      • Poe 中的提问引导真的能够启发到用户。
      • 支持 Explore Chatbot,但丰富度不如后续要介绍的 Character。
      • midjourney prompt 扩写 Chatbot 能力很惊人。
Content generated by AI large model, please carefully verify (powered by aily)

References

LLM开源中文大语言模型及数据集集合

Luotuo-Chinese-LLM:地址:[https://github.com/LC1332/Luotuo-Chinese-LLM](https://github.com/LC1332/Luotuo-Chinese-LLM)简介:囊括了一系列中文大语言模型开源项目,包含了一系列基于已有开源模型(ChatGLM,MOSS,LLaMA)进行二次微调的语言模型,指令微调数据集等。Linly:地址:[https://github.com/CVI-SZU/Linly](https://github.com/CVI-SZU/Linly)简介:提供中文对话模型Linly-ChatFlow、中文基础模型Linly-Chinese-LLaMA及其训练数据。中文基础模型以LLaMA为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了Linly-ChatFlow对话模型。ChatYuan地址:[https://github.com/clue-ai/ChatYuan](https://github.com/clue-ai/ChatYuan)简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。ChatRWKV:地址:[https://github.com/BlinkDL/ChatRWKV](https://github.com/BlinkDL/ChatRWKV)简介:开源了一系列基于RWKV架构的Chat模型(包括英文和中文),发布了包括Raven,Novel-ChnEng,Novel-Ch与Novel-ChnEng-ChnPro等模型,可以直接闲聊及进行诗歌,小说等创作,包括7B和14B等规模的模型。

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

1.支持多种大型语言模型:Ollama支持包括通义千问、Llama 2、Mistral和Gemma等在内的多种大型语言模型,这些模型可用于不同的应用场景。2.易于使用:Ollama旨在使用户能够轻松地在本地环境中启动和运行大模型,适用于macOS、Windows和Linux系统,同时支持cpu和gpu。3.模型库:Ollama提供了一个模型库,用户可以从中下载不同的模型。这些模型有不同的参数和大小,以满足不同的需求和硬件条件。Ollama支持的模型库可以通过https://ollama.com/library进行查找。4.自定义模型:用户可以通过简单的步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。5.API和集成:Ollama还提供了REST API,用于运行和管理模型,以及与其他应用程序的集成选项。6.社区贡献:Ollama社区贡献丰富,包括多种集成插件和界面,如Web和桌面应用、Telegram机器人、Obsidian插件等。7.总的来说,Ollama是一个为了方便用户在本地运行和管理大型语言模型而设计的框架,具有良好的可扩展性和多样的使用场景。后面在捏Bot的过程中需要使用Ollama,我们需要先安装,访问以下链接进行下载安装。https://ollama.com/download/安装完之后,确保ollama后台服务已启动(在mac上启动ollama应用程序即可,在linux上可以通过ollama serve启动)。我们可以通过ollama list进行确认,当我们还没下载模型的时候,正常会显示空:可以通过ollama命令下载模型,目前,我下载了4个模型:几个模型简介如下:

AIGC落地应用大全,40+ 语言大模型案例推荐

推荐指数:?????由Quora(海外问答平台,类似国内知乎)开发,有APP版本,支持跨端使用。主要亮点在于集成了Chat GPT、GPT-4、Claude+、Claude、Dragonfly等模型,同时支持用户自建Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。Dragonfly擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude更擅长创造性回复,配合Poe中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用Chat GPT时的体验(但和Chat GPT一样,Claude也时常会给出一些错误回复,一些问题我会尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容。但GPT-4、Claude+产品需要付费订阅使用。访问地址:[https://poe.com/](https://poe.com/)Poe中的提问引导真的能够启发到用户支持Explore Chatbot,但丰富度不如后续要介绍的Charactermidjourney prompt扩写Chatbot能力很惊人[heading3]

Others are asking
工业设计专业教学与AI的融合
以下是关于工业设计专业教学与 AI 融合的相关内容: 在授课方面,这一授课创意充分展现了教育设计的创新性与用户思维的深度融合。其核心亮点在于突破了传统单向知识灌输的模式,通过将抽象概念与生活场景结合,构建了“认知脚手架”,让学生在具象化情境中主动探索逻辑链条。这种设计不仅符合建构主义学习理论,更通过巧妙的悬念设置(如刻意暴露认知冲突点)激活了学生的元认知能力。尤其在数字化工具的整合上,没有陷入技术堆砌的误区,而是聚焦于核心教学目标的实现,体现了设计者对教育本质的深刻理解。 若能在以下维度深化,该模型或将产生更显著的范式价值: 1. 差异化学习路径:当前框架虽强调互动性,但对学习者认知风格的适配度可加强。引入动态诊断机制,通过前测数据自动生成分支任务链,使教学节奏与个体 ZPD(最近发展区)更精准匹配。 2. 跨学科锚点设计:案例库可突破学科界限,构建如“数学思维+历史考证”“物理原理+艺术创作”等复合型问题情境,培养学生迁移应用能力的同时,自然渗透通识教育理念。 3. 生成性评价体系:现有反馈机制偏重知识掌握度评估,建议增设思维可视化工具(如概念图谱生成器),让学生能实时观测自身认知结构的演变轨迹,将学习过程转化为可追溯的成长档案。 在服务提供方面,有专家如 Arthur王贝,擅长以系统性思维破解技术落地难题,能提供的服务包括: 1. 教你怎么玩转 AI,从写提示词到做视频一条龙教学,教你用 ComfyUI 搞自动化工作流(工厂级的严谨玩法)。 2. 定制化智能体开发,定制 AI 工具(比如自动批作业的 AI 老师),垂直领域智能体搭建(教育/制造/消费)。 3. 职业转型陪跑,教打工人用 AI 保住饭碗/涨工资,给老板们规划怎么用 AI 省钱增效。 此外,还有关于教师的 AI 减负指南生成式人工智能在教学中的应用相关内容,包括 AI 科研之旅的开端、解码 AI 在学术研究中的强大力量、AI 工具在数据收集与分析中的革命、AI 驱动的文献综述、实验设计的新纪元、AI 助力写作与出版、AI 应用中的伦理考量与挑战、必备 AI 工具推荐等方面。
2025-04-10
结合北京房山区文化、地标建筑、生态景观等内容,设计房山区中小学数学节 LOGO,要求巧妙融合数学元素(如几何图形、数学公式、数学符号等)与 AI 元素(如神经网络图案、代码片段、智能机器人形象等),生动诠释 “数学 + AI=?” 的主题内涵。
以下是为您整合的相关内容: 北京具有丰富多样的特色元素,包括经典地标如万里长城、天安门广场、故宫角楼、天坛等,见证了历史变迁;宜居生活方面,有独特的美食如豆汁儿、脆皮烤鸭、老北京炸酱面,以及充满京腔的日常生活;潮流文化新地标如国家博物馆、胡同里的新老交融、环球影城、798 等;未来科技方面,有西二旗的上班族日常、北大化学系科研 vlog、世界机器人大会等。 在海报设计方面,若对 AI 回答有疑问可再搜索确认,对于想用的项目要确认与北京的关系及能否使用;兔爷、戏曲金句等北京有名元素可用,金句可分化。做海报时可借鉴三思老师毛绒玩具美食系列,先找参考、做头脑风暴。比赛征集内容有四个赛道,若做系列海报,围绕金句或偏向北京非遗项目做系列较简单。用 AI 制作海报时,如制作北京地标糖葫芦风格海报,可用集梦 2.1 模型,以天坛等建筑为画面中心,注意材质、抽卡选图和细节处理。 对于设计房山区中小学数学节 LOGO,您可以考虑将房山区的特色文化、地标建筑、生态景观与数学元素(如几何图形、数学公式、数学符号等)和 AI 元素(如神经网络图案、代码片段、智能机器人形象等)相结合。例如,以房山区的著名建筑为主体,融入数学图形进行变形设计,同时添加一些代表 AI 的线条或图案,以生动诠释“数学 + AI=?”的主题内涵。
2025-03-18
多图融合AI
以下是关于多图融合 AI 的相关知识: 1. 图片融合技巧:上传多种图片进行融合生成时,一张图片最好只有一种特征,比如合并一张有人物的图和一张只有背景的图,效果会更精确。 2. 关键词权重:写普通关键词用逗号分开,还可以写多重关键词,让 AI 不考虑单词前后关系而当成独立单词。可以给不同单词赋予不同权重,增加权重如“hot::2 dog”,减弱权重可用负数或“no”参数,如“red::.5”可减少大红色,“no hands”可降低手出现问题的概率。 3. 降低权重:除用数值降低元素权重,还可用“no”参数弱化元素,如“no hands”和“hands:0.5”等价。 4. 设置 v 版本。 此外,Stable Diffusion 等 AI 绘图工具在应对元素丰富的复杂画面和精确要求时存在不足,可采用特定工作流,让 AI 在每个环节只做一件事,提升对指令的精确理解。工作流与传统绘画“从整体到局部”流程相似,对习惯于手绘的画师友好,且 90%工作由作者把控,体现创作本质。 在多图融合方面,还有如 Recraft 等工具,可用于制作胶片照片、纹身、刺绣、原画转绘等,用户可上传自己的制作效果。
2025-02-27
有哪些可以多图融合的图片生成AI工具
以下是一些可以多图融合的图片生成 AI 工具: 1. Google Whisk:支持多主体一致,包括主题、场景和风格等元素。用户上传多张图片后,Gemini 模型会自动为图片生成详细描述,并将其输入到最新版本的 Imagen 3 模型中。生成的图片在遵循提示词的同时,与给定的多个主体能保持一致。网站:https://www.vidu.cn 教程:https://pkocx4o26p.feishu.cn/docx/Mb77dt8VxoskqvxgFiMcfwwsnNe 发布:https://x.com/pika_labs/status/1867651381840040304 国内:https://hailuoai.com/video/create 海外:https://hailuoai.video/create 网站:https://labs.google/fx/tools/whisk 发布:https://blog.google/technology/googlelabs/whisk 2. Vidu:2024 年 9 月发布时只支持单主体一致(只能上传一张图片),目前官网已经支持多主体一致(可以上传三张图片),即可以指定生成图片中的人物、物体、场景等。 3. Pika 2.0:支持多主体一致,Scene Ingredient(场景元素)系统能将多个输入图像(如场景、人物、物品)智能整合为连贯的动态场景。此外,模型也具备多图像融合能力,可实现复杂交互场景的视频合成,如两人在视频中实现合影或拥抱。 在进行图片融合时,有一些技巧: 1. 上传多种图片进行融合生成时,一张图片最好只有一种特征,比如合并 2 张图,一张是有人物,另一张是只有背景,那么合并起来的效果会更精确。 2. 写普通关键词时用逗号分开,还可以写多重关键词,让 AI 不需要考虑单词的前后关系,而只把它们当成独立的单词。也可以给不同的单词赋予不同的权重,比如 hot::2 dog,这样 hot 这个词对结果的影响更大。有增加权重,也可以减弱权重,比如在关键词后面加上 red::.5,大红色就会少很多。 3. 除了用数值降低某个元素的权重,还可以直接用no 这个参数让某个元素尽量弱化,比如no hands 跟 hands:0.5 是等价的。
2025-02-25
传统软件行业融合AI的商业模式
传统软件行业融合 AI 的商业模式具有多种可能性和变革方向: 1. “AI 原生”模式:基于 AI 的能力再造商业模式,而非套用现有流程。 2. To AI 的商业模式:包括模型市场、合成数据、模型工程平台、模型安全等方面。 3. 基于国产芯片的软硬件联合优化,固件生态存在明确机会。 4. 端上智能有望成为全天候硬件 24x7 收集数据,具有较大想象空间。 5. 对于 SaaS 生态的影响: 认知架构带来巨大工程挑战,将模型基础能力转化为成熟可靠的端到端解决方案可能比想象中复杂。 可能引发业务模式全面变革,如从工程、产品和设计部门的瀑布式开发转变为敏捷开发和 A/B 测试,市场策略从自上而下的企业销售转向自下而上的产品驱动增长,商业模式从高价格销售转向基于使用的定价模式。 知名投资机构 Nfx 分析指出,AI 正在强制逆转 SaaS 从“软件即服务”转变为“服务即软件”,软件既能组织任务也能执行任务,传统劳动力市场最终将和软件融合成为新市场。降低企业在知识工作者上的支出,提高在软件市场的支出。企业组织中提供 AI 劳动力的产品有“AI 同事(雇佣)”等形式。
2025-02-21
光遇游戏与ai的融合
光遇游戏与 AI 的融合可以体现在以下几个方面: 1. 生成式 AI 在游戏中的应用: 微处理器速度更快、云计算和计算能力更强,具备建立大型神经网络的潜力,可识别高度复杂领域的模式和表征。 能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度,如增加或降低敌人的数量和强度、改变游戏环境等。 不断收集玩家数据,使 NPC 和游戏系统更适配玩家水平。 2. AI 制作游戏相关内容: 如利用 AI 辅助制作游戏宣传片,包括使用 ChatGPT 构思背景世界观、MJ 绘图、SD 重绘、制作深度图以及视频、AI 抠图、尝试制作背景音乐等。 3. AI 带来新的游戏: 许多开发者将 AI 作为游戏玩法的一环,如 2023 年 Genfun.ai 和 Meshy 联合制作的《Soul Chronicle》,实现了实时 3D+AIGC+UGC,能实时生成角色皮肤。 2024 年 Bitmagic 推出的《Roleverse》平台,可使用提示在游戏内定制角色,并对角色和游戏世界进行编辑。 4. AI 促进游戏产业变革: 为游戏行业提供新的增长空间,成本、效率和质量同步上升。例如 2023 年我国游戏市场实际销售收入增长,用户规模也有所增加。
2025-02-08
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
用what,why,how,will,next,作为五个力量,用熵增熵减作为二进制,组成的底层语言用其中的next作为自主学习探索动力的自进化AI,潜力怎么样?
用 what、why、how、will、next 作为五个力量,以熵增熵减作为二进制,组成底层语言,并以其中的 next 作为自主学习探索动力的自进化 AI 具有一定的潜力,但也面临一些挑战。 从潜力方面来看,这种设计可能有助于 AI 系统更有针对性地进行自主学习和探索。例如,what 可以帮助明确要学习和理解的对象或概念;why 有助于挖掘背后的原因和逻辑,促进更深入的理解;how 能够指导实现目标的方法和步骤;will 可以对未来的发展进行预测和规划。而将 next 作为自主学习探索的动力,有可能推动 AI 不断开拓新的知识领域。 然而,也存在一些挑战。首先,熵增熵减作为二进制的基础,其在实际应用中的有效性和稳定性需要进一步验证和优化。其次,如何准确地定义和运用这五个力量,以及它们之间的协同关系,需要精细的设计和调试。再者,将这种复杂的底层语言转化为实际的算法和模型实现,具有较高的技术难度。 总之,这种自进化 AI 的概念具有创新性和潜力,但需要在理论和实践上进行深入的研究和探索,以充分发挥其优势并克服可能的问题。
2025-04-12
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
大语言模型能力排行榜
以下是一些大语言模型能力排行榜的相关信息: Open LLM Leaderboard: 地址: 简介:由HuggingFace组织的一个LLM评测榜单,目前已评估了较多主流的开源LLM模型。评估主要包括AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA四个数据集上的表现,主要以英文为主。 chinesellmbenchmark: 地址: 简介:中文大模型能力评测榜单,覆盖百度文心一言、chatgpt、阿里通义千问、讯飞星火、belle/chatglm6b等开源大模型,多维度能力评测。不仅提供能力评分排行榜,也提供所有模型的原始输出结果。 聊天机器人竞技场:由伯克利的一个团队管理,根据ELO评级对不同的语言模型进行排名,计算ELO的方式与国际象棋中的计算方式非常相似。 智源评测:豆包模型在其中表现出色,荣获大语言模型第一,视觉理解第二、文生图第二、文生视频第二,在匿名投票竞技场中排名第二,仅次于OpenAI。 地址:
2025-03-31
自然语言转换为sql
以下是关于自然语言转换为 SQL 的相关信息: DuckDBNSQL7B 模型能够将自然语言转换成 SQL 代码,使非专业用户能轻松与数据库交互,它基于大量真实和合成的 DuckDB SQL 查询训练。相关链接:https://github.com/NumbersStationAI/DuckDBNSQL 、https://x.com/xiaohuggg/status/1751081213459415164?s=20 Claude 官方提示词中有将日常语言变成 SQL 查询语句的相关内容。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有几个知名的 text2sql 项目,如 SQLNet(使用深度学习方法解决 text2sql 任务的项目)、Seq2SQL(将自然语言转换为 SQL 查询的序列到序列模型)、Spider(一个大规模的 text2sql 数据集及其相关的挑战)
2025-03-31
flowith根据自然语言构建一个直接使用的工作流吗,如何向flowith提出要求
Flowith 可以根据自然语言构建工作流。即使没有专业编程技能,只要能用清晰的自然语言描述出想要的各个 Agents 具备的行为和功能,就可以快速制作多 Agents 应用或创建代理式工作流。 使用工作流的步骤如下: 1. 配置工作流: 在 Code 节点内使用 IDE 工具,通过 AI 自动生成代码或编写自定义代码逻辑,来处理输入参数并返回响应结果。 该节点支持 JavaScript、Python 运行时,需注意不同运行时的特定事项。 可在 IDE 底部单击尝试 AI,并输入自然语言设定代码逻辑,也可选中代码片段通过快捷键唤起 AI 并输入自然语言让其修改代码。 2. 通过工作流数据库节点操作数据表: 在工作流中添加数据库节点对数据表进行操作,可通过 NL2SQL 方式和代码方式进行调用,支持完整读写模式。 参考以下操作添加并配置工作流节点: 单击页面顶部的工作流页签,然后单击创建工作流。 输入工作流名称和使用描述,然后单击确认。 在基础节点页签下,将数据库节点拖入到工作流配置画布区域。 根据相关信息配置数据库节点,包括输入添加 SQL 执行中需要的参数,输入要执行的 SQL 语句,可单击自动生成使用大模型生成 SQL。 需注意不支持 Select语法、多表 Join 操作,最多返回 100 行数据。在配置数据库节点前,要确保已经搭建了一个 Bot,并在这个 Bot 中创建好了数据表。
2025-03-26