Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型的定义是什么?有官方权威定义吗

Answer

大模型的定义可以从以下几个方面来理解:

  1. 从技术角度:以 Transform 为代表的大模型采用自注意力(Self-attention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”主要指用于表达 token 之间关系的参数多,例如模型中的权重(weight)与偏置(bias),像 GPT-3 拥有 1750 亿参数。
  2. 通俗来讲:大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。
  3. 类比角度:可以用『上学参加工作』这件事来类比大模型的训练、使用过程,包括找学校(需要大量计算资源)、确定教材(需要大量数据)、找老师(选择算法)、就业指导(微调)、搬砖(推导)等。
  4. 分类角度:大型模型主要分为两类,一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。

参考:How does an LLM "parameter" relate to a "weight" in a neural network?

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”,指的是用于表达token之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数,其中权重数量达到了这一量级,而词汇表token数只有5万左右。参考:[How does an LLM"parameter"relate to a"weight"in a neural network?](https://datascience.stackexchange.com/questions/120764/how-does-an-llm-parameter-relate-to-a-weight-in-a-neural-network"How does an LLM"parameter"relate to a"weight"in a neural network?")

大模型入门指南

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID||-|-||The|345||cat|1256||sat|1726||…|…|

十七问解读生成式人工智能

大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,这类模型能够处理包括文本、图片、音频等多种类型的信息。[heading1]问题八、大型多模态模型与大型语言模型有何不同?[content]1.二者处理的信息类型不同。大型语言模型专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。而大型多模态模型不仅能处理文本信息,还能理解和生成图片、音频等多种类型的信息,这使得它们能够在更多样化的任务中应用。2.应用场景也有所不同。大型语言模型主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等。而大型多模态模型由于能够处理多种信息类型,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。3.在数据需求方面也有所不同。大型语言模型主要依赖于大量的文本数据进行训练,而大型多模态模型则需要多种类型的数据进行训练,包括文本、图片、音频等,以便在不同模态间建立关联。[heading1]问题九、有了大模型,是不是还有小模型?[content]当我们谈论所谓的“小模型”时,实际上是在相对地比较。与那些拥有海量参数和训练数据的大型模型相比,这些模型的规模显得更小一些。因此,在日常交流中,我们习惯将它们称作“小模型”。但如果要更精确地描述,这些模型其实是被设计来完成特定任务的,比如最初用于图像分类的模型,只能分辨是或不是某一个东西(比如猫?、狗?)。

Others are asking
AI视频的定义
AI 视频是通过人工智能技术生成或处理的视频内容。从生成方式分类,包含文生视频、图生视频(如 Runway、Pika labs、SD+Deforum 等)、视频生视频(如逐帧生成、关键帧+补帧、动态捕捉、视频修复等)、AI Avatar+语音生成(如 Synthesia、HeyGen AI、DID)、长视频生短视频、脚本生成+视频匹配、剧情生成等。从产品阶段和可用维度分类,不同的产品具有各自的特点和优势。 例如,GoogleAI 视频 Veo2 能够生成具有高度真实感和物理规律的视频,对拍摄风格、角度、运动等的语义理解极佳,能够进行多轮材质变化和 4K 视频输出,具有高真实质感、遵循物理规律、稳定性强等优势,且无需长时间排队等待。 此外,还有以“AI 是谁”为主题的 Video Battle 视频挑战赛,对参赛作品有格式、时间、内容等方面的要求,并设置了相应的奖项。
2025-04-12
问题定义优化助手
以下是关于问题定义优化助手的相关内容: 市面上有很多 Prompt 框架,框架可理解为从不同角度为思考问题提供解决方案的路径。一个问题的解决通常包括问题背景(所需角色、具备的能力和资源)、问题目标(期望的输出结果和验收标准,如提供商务谈判的完整过程)、提供的资料信息、限制条件(如预算限制等)、角色技能(为目标服务所需调动的技能,如熟悉某个领域的商业案例)和工作流(解决问题时需完成的任务步骤,如信息收集、谈判策略设定等)。细致的内容可能得到更好的结果,但也可能限制可能性,这是一个平衡和折中的结果。 效果呈现方面,体验地址为 。 3 月 5 日作业要求大家看完小七姐的 5 篇入门指南并动手实践,写出自己的一条 prompt 及对话分享出来,提交格式为创作思路和目标|prompt 展示|输出结果。例如无上的目标是让大模型对自己的提问内容进行优化,其思路包括询问大模型“更好的提问”方法论、让 kimi 分析并优化等步骤。 在从 AI 助教到智慧学伴的应用探索中,提到了在不同学段和学科的应用场景,以及向 AI 大模型提问的问题设计,还涉及教育提示词优化助手。
2025-04-11
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
支持Mac的AI助手,能支持自定义大模型和智能体
以下是为您提供的支持 Mac 且能支持自定义大模型和智能体的 AI 助手相关信息: 在网站上增加一个 AI 助手: 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 2. 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 1. Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 2. 它提供了模型库,用户可从中下载不同模型,也支持自定义模型,例如修改模型的温度参数或设置特定系统消息,还提供了 REST API 用于运行和管理模型以及与其他应用程序的集成选项。 3. Ollama 社区贡献丰富,有多种集成插件和界面。安装时访问 https://ollama.com/download/ ,安装完后在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认。 智能体应用的相关介绍: 大模型存在无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等局限性,为提升用户体验和增强业务竞争力,越来越多的企业构建 AI 助手。智能体应用基于大模型,通过集成特定的外部能力弥补不足,适用于有企业官网等渠道期望提供产品咨询服务、缺少技术人员开发大模型问答应用等场景。其典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。
2025-03-23
ai的定义
AI 是某种模仿人类思维,可以理解自然语言并输出自然语言的东西。它可以被视为一个黑箱,其生态位是一种似人而非人的存在。 AGI 通常被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。 从技术角度来看,GenAI 是一种基于深度学习技术,利用机器学习算法从已有数据中学习并生成新的数据或内容的 AI 应用。AIGC 则指利用 GenAI 创建的内容,包括图像、视频、音频、文本和三维模型等。目前国内主要在相关法律法规框架下对 AIGC 行业进行监管。
2025-03-18
权威人士发言,AI对于个人意味着什么
以下是关于权威人士对“AI 对于个人意味着什么”的相关发言: 山姆·奥特曼认为,AI 将成为人类发明的最具变革性和最有益的技术,是阻止人类自我毁灭的手段。他坚信世界正面临巨大而迅速的变革,而这与他的工作密切相关。然而,他在重要会议发言后不久被 OpenAI 董事会解除了首席执行官的职务,此消息震惊了科技界。 美国副总统万斯提出美国将对 AI 行业发展“减少监管”,确保美方 AI 行业技术继续保持世界领先水平,成为各国合作首选,避免 AI 被任何意识形态所操控。同时保证 AI 能够帮助人们提升效率和生产力,而不是取代人类,成为辅助工具,并教会学生如何使用 AI,同时也向各国政府发出相同呼吁。 在个人能力方面,批判性思维与复杂问题解决能力在 AI 时代至关重要。批判性思维指分析、评估、推理并做出明智判断的能力,能够帮助我们判断人工智能技术的判断是否合理。复杂问题解决与批判性思维密切相关,指在不确定情境下分析问题、设计解决方案的能力,AI 能提供帮助,但提出问题和综合决策仍需人来主导。我们可以通过参与实际项目、案例研究等方式提高这些能力。
2025-03-11
权威的AI播客网址链接发我
以下是一些权威的 AI 播客网址链接: 1. 简报: TLDR AI: The Sequence: Deep Learning Weekly: Ben’s Bites: Last week in ai: Your guide to AI: 2. 播客: No Priors podcast hosted by Sarah Guo 和 Elad Gil Robot Brains Podcast hosted by Pieter Abbeel Lex Fridman Podcast hosted by Lex Fridman The Gradient podcast hosted by Daniel Bashir Generally Intelligent hosted by Kanjun Qiu Last Week in AI 3. 会议:World AI Cannes Festival 4. NotebookLM 官网链接:https://notebooklm.google/ 5. PodLM 体验地址:https://podlm.ai/
2025-03-03
给文生图ai模型打分的权威标准是什么
给文生图 AI 模型打分的权威标准通常包括以下方面: 1. 图像生成质量:如清晰度、细节丰富程度、色彩准确性等。 2. 多样性:生成图像的风格、主题和表现形式的丰富程度。 3. 文本一致性:生成的图像与输入的文本描述的匹配程度。 在具体的测评中,会构建包含人工评估和机器评估的全面评测内容。人工评测方面,会邀请具有图像领域知识的专业评估人员,从画面质量、图文相关性、整体满意度等维度为生成图像打分。例如,在对 Kolors 与其他模型的比较中,就从这些维度进行了评估。 此外,像 SuperCLUEImage 测评基准首次公布的结果中,DALLE 3 以 76.94 分高居榜首,显示其在图像生成质量、多样性和文本一致性方面的卓越表现。百度文心一格和 vivo 的 BlueLMArt 位列国内前列,但与国际领先模型仍有差距。
2025-01-07
帮我查一下这四家主流大模型的应用能力评测报告吧,通用能力和单项能力都可,数据需要权威一些文心一言 文心一格 通义千问 通义万相 讯飞星火 ai小科 智谱
以下是为您找到的关于主流大模型应用能力评测的相关报告: 小七姐的测评: 测评机制:以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,对智谱清言、文心一言 4.0、Kimi Chat 进行测评。 能力考量:包括复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:共分为五轮,分别针对不同的任务和模型进行多次测试。 中文大模型基准测评 2023 年度报告: 优秀模型:文心一言 4.0 API(百度)。 模型特点:在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且水平较高。 适合应用:能力栈广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作、代码编写及纠错等方面,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。 观点文章中的测评: 目前体验效果比较好的有科大星火模型、清华 ChatGLM、百度文心一言。 星火目前感觉最接近 GPT3.5(0301 版本)的 80%90%,但 GPT3.5 进化到 6 月版本效果更强。 对大模型的评估可从基础能力、职场能力、探索对话三个方面判断,基础能力包括语言(文本)生成和语言理解,如常识类问题和分词类问题。
2024-12-27
目前最为权威的视频生成 AI 是哪些?
目前较为权威的视频生成 AI 有以下几种: 1. Pika:是出色的文本生成视频 AI 工具,擅长动画制作且支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但需收费。 4. Kaiber:视频转视频 AI,可将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,能生成长达 1 分钟以上的视频。 此外,还有一些具有代表性的海外项目: 1. Sora(OpenAI):以扩散 Transformer 模型为核心,能生成长达一分钟的高保真视频。支持文本生成视频、视频生成视频、图像生成视频,在文本理解方面表现出色,能在单个生成的视频中创建多个镜头,保留角色和视觉风格。 2. Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数,被定位为基础世界模型,可通过单张图像提示生成交互式环境。 Meta 开源了视频生成模型的测试集:Movie Gen Video Bench 和 Audio Bench。Movie Gen Video Bench 是目前规模最大、最全面的视频生成评估基准,包含 1000 多个提示词,涵盖多种概念并有不同运动幅度的测试。Movie Gen Audio Bench 用于评估视频音效生成及视频配音能力。 OpenAI 的相关进展包括:Canvas 新增历史版本对比功能,基于服务端实现,可查看项目历史版本并对比,方便追踪和管理内容变化;发布 gpt4oaudiopreview 模型,支持异步语音交互。 更多的文生视频的网站可以查看: 。需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2024-12-18
2024年最权威的人工智能行业报告
以下是 2024 年人工智能行业报告的相关内容: 在 2024 年,国内外 AI 企业的竞争达到白热化阶段。 国外方面: Google DeepMind 和 OpenAI 展示了强大的文本到视频扩散模型预览,但访问受限且技术细节披露不多。 Meta 更进一步,将音频加入其中,Movie Gen 核心包含 30 亿视频生成和 13 亿音频生成模型,能分别以每秒 16 帧的速度生成 16 秒的视频和每秒 45 秒的速度生成音频片段。 Llama 3.1 是迄今为止最大版本,在推理、数学、多语言和长上下文任务中能与 GPT4 相抗衡,标志着开放模型缩小与专有前沿的差距。 OpenAI 草莓落地,加倍扩大推理计算规模,通过将计算从预训练和后训练转移到推理,以链式思维方式逐步处理复杂提示,采用强化学习优化,在需要大量推理的基准测试中取得显著改进,但成本较高。 Meta 推出 Llama 3 家族,包括 3.1 和 3.2 版本,使用大量令牌训练,在规模上不断突破。 国内方面: 国内涌现出类似可灵、即梦、智谱清影等一系列 AI 生成视频工具,生成结果甚至远超国外。 由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色。中国模型各有优势,如 DeepSeek 在推理过程中通过多头隐式注意力减少内存需求并改进 MoE 架构,零一万物更加关注数据集的建设。中国模型更能优先考虑计算效率,以弥补 GPU 访问的限制,并学会更有效地利用资源。 需要注意的是,报告中对中国的 AI 生成图、生成视频的工具未展开详细说明,但这并不代表中国有关该功能的 AI 工具落后于国外。
2024-12-07
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
openai官方文档
以下是关于 OpenAI 官方文档的相关信息: 对于刚入门学习提示词的朋友,建议先有一个大模型帐号并熟悉与之对话的方式。推荐的国产平替有 。 学习 prompt 必须看 OpenAI 的官方文档,相关链接有: 。 在 OpenAI 官方的说明文档(Documentation)中,为用户提供了若干项策略以帮助更好地使用 ChatGPT。例如策略一:编写清晰的说明,即在询问中包含详细信息以获得更多相关答复。因为大模型无法在有限信息中“猜测”用户意图,所以提问时不要惜字如金,多说一些内容、多提供一些信息能有效提高回复的质量和丰富性。文中还列举了多个例子进行说明。
2025-03-29
midjourney中文站和官方网站上的内容是一样的吗
Midjourney 中文站和官方网站的内容不完全一样。 Midjourney 官网具有以下特点和操作细节: 已向生成 100 张以上图片的用户开放使用权限,登录官网后,左侧为各种页面入口,顶部有生成入口(prompt 框)和搜索框。在社区作品、创作(Create)以及组织(Organize)页面中,随时可用 prompt 框和搜索框,无需频繁切换页面。 可通过点击 prompt 框最右侧的图标设置常用参数默认值,包括画面比例和个性化模型开关。 图片参考在官网上变得简单直观,点击 prompt 框最左侧的图片按钮或直接拖入图片即可,官网会记录所有使用过的图片,方便调用或删除。当鼠标悬停在图片上时,会看到 3 个小图标,从左到右分别是角色参考、风格参考、整图参考,如需多种参考逻辑可按住 shift 键点选多个图标。 创作页面的最大亮点是 prompt 的复用,可以直接点击画面描述或复制描述词到 prompt 框中,也可以直接点击下方横列菜单里的按钮,将包括参考图在内的完整 prompt 替换当前的 prompt。点击图片会进入单图调整模式,常用的操作指令集中在右下角的按键中,并且上线了全新的 Editor 编辑器功能。 此外,关于 Midjourney 还有以下相关内容: 有关于 Midjourney v5.1 的 AIGC Weekly23 相关介绍。 有 Midjourney 的隐私政策,包括适用范围、变更情况、定义等。
2025-03-18
stable diffusion官方网址
Stable Diffusion 的官方网址如下: SD 1.4 官方项目:https://github.com/CompVis/stablediffusion SD 1.5 官方项目:https://github.com/runwayml/stablediffusion SD 2.x 官方项目:https://github.com/StabilityAI/stablediffusion diffusers 库中的 SD 代码 pipelines:https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion
2025-02-08
请给我chatgpt的官方使用教程,教会我作为一个新人小白,怎样可以快速的学会使用chatgpt
以下是关于 ChatGPT 的使用教程: 一、认识 ChatGPT 1. ChatGPT 名称含义:GPT 即 Generative PreTraining Transformer,其中 Generative 表示生成式,PreTraining 表示预训练,Transformer 表示转换器。 2. 实质功能:本质是“单字接龙”,长文由单字接龙的回归所生成。GPT 作为大脑即模型需要训练,训练方式是通过材料学习,不断形成模型。训练目的是学习“提问和回答的通用规律”,实现举一反三。但它不是搜索引擎的升级版,可能出现“幻觉”,对现实不存在的东西进行合乎规律的捏造。 二、注册、安装、订阅 1. 简介:ChatGPT 是一种基于 GPT 架构的人工智能模型,由 OpenAI 开发,是自然语言处理工具,能理解和生成接近人类水平的文本。 2. 版本:目前官网有 GPT3.5 和 GPT4 两个版本。GPT3.5 免费,拥有账号即可使用;GPT4 智能程度更高,有更多功能,如 DALL.E3(AI 画图功能)和 GPTs 商店和高级数据分析等插件,PLUS 套餐收费 20 美金/月,还有团队版和企业版,费用更贵,一般推荐 PLUS 套餐。 3. 注册准备:在注册 ChatGPT 账号前,先注册谷歌账号,因其支持一键登录,可省去很多后续注册流程。谷歌账号注册支持国内手机号码和国内邮箱验证,过程简单。 三、学习英语的应用 推特博主的英语老师制作了一个 GPT 工作流,基于个人日常需求生成定制素材。具体使用方法: 1. 先把特定 prompt 喂给 ChatGPT(建议开新对话专门用于学习英文)。 2. 然后 ChatGPT 会扮演美国好朋友,对输入的英文和中文表达返回更地道的表达,对俚语部分加粗,还会举一反三结合欧美流行内容给出更多例子。 3. 输入特定语句,ChatGPT 会输出对话回顾并建议 3 个推荐任务强化记忆。 建议使用方式:开窗口复制 prompt,手机端打开历史记录,点右上角耳机图标打电话,既能练口语又能练听力,结束后看回顾帮助阅读。 群友也写了类似版本在讯飞上尝试,效果不错。
2024-11-23
openai 官方发布 学生写作指南
以下是 OpenAI 官方发布的与学生写作相关的指南内容: 目录: 一、获得更好结果的六种策略 写清楚说明 GPT 模型无法读取您的心思,输出不符合期望时可提出具体要求,如简短回答、专家级别写作、指定格式等。越少让模型猜测您的需求,越可能获得满意结果。 策略包括在问题中包含细节、要求模型采用角色、使用分隔符区分输入部分、指定完成任务的步骤、提供示例、指定期望的输出长度。 提供参考文本 GPT 可能编造假答案,为其提供参考文本可减少这种情况,如指示模型使用参考文本回答、使用参考文本中的引用来回答。 六大策略助您获得更佳结果 撰写清晰的指令 模型无法读心,输出不理想时可调整要求,让模型无需猜测您的想法以获得期望结果。 技巧包括在查询中添加详细信息、请求模型扮演特定角色、使用分隔符区分输入部分、明确指出完成任务的步骤、提供实例、明确指定希望输出的长度。 相关原始链接:https://www.oneusefulthing.org/p/howtouseaitodostuffanopinionated 。
2024-11-15
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14