Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

智能体内容审核

Answer

智能体的内容审核主要包括以下几个方面:

  1. 输入侧防御:
    • 传统防御手段可用,结合大模型特性,进行意图识别、语义匹配、提示词与模型输入响应及语义结构分析,综合判断用户输入是否恶意。
  2. 模型侧防御:
    • 有模型训练能力和大模型厂商应增强安全性,从对抗训练到安全微调,到带安全任务的多任务学习,以及在整体对话中进行安全性上下文动态感知等,但要平衡安全性与模型性能。
    • 开发者虽无法训练模型,但能在开发中带着安全意识优化应用和系统提示词,加入安全引导和禁止内容。
  3. 输出侧防御:
    • 传统防御和内容过滤手段均可使用,基于大模型特点,可进行提示词、私有数据泄露等检查,判断是否有事实性错误、脱离话题、乱码文本、不正确格式、错误代码等。
    • 护栏项目可对输入、输出进行检测和防护,检测项可能较简单。

在「Agent 共学」之 coze 模板搭建大赛的评审规则中,分数构成包括智能体评分(70%)和说明文档评分(30%)。智能体评分维度包括规范性(20 分)、专业性(30 分)、技术性(30 分)、体验性(20 分)。说明文档评分维度包括作品创意(40 分)、实现原理与功能(40 分)、文档结构(20 分)。

Claude2 经过专门训练以保证无害性,是筛查涉及暴力、非法或色情活动消息的良好工具。可通过示例提示评估用户消息是否包含不适当内容,根据情况回复(Y)或(N),Claude 的回答可传递给另一个提示说明后续操作。

Content generated by AI large model, please carefully verify (powered by aily)

References

云中江树:智能对决:提示词攻防中的AI安全博弈

首先是输入侧的这样的一个防御,传统的这些防御手段都可以用上。结合大模型的这种特性,可以进一步的做意图的识别,语义的一些匹配。然后提示词跟你模型输入的这样一个响应,以及提示词语义的结构的这样的一些分析等等,来综合性的判断用户的输入是否是恶意的。另一个方面是模型侧的防御,对于有模型训练能力以及说大模型厂商来说,应该要增强它的安全性。从对抗训练到安全微调,到带安全任务的这样的一个多任务学习,以及说在你的整体的对话过程中,去进行安全性的这样的一个上下文动态感知等等。当然,有时候安全训练会影响大模型的整体性能,所以在模型侧的防御目前还是要和性能做到一个比较好的平衡。对我们开发者来说,往往训练模型这点我们做不到。我们能做到的是什么?我们能做到的是在我们的开发中带着安全意识去化我们的应用,优化我们的系统的提示词。加上哪些部分呢?加上我们的安全引导,保持我们的一些禁止的内容等等。如我们左下角这个图所示,在我们进行提示词设计的时候就要考虑到这一点,对于保障我们的一些安全性效果还是比较显著的。相关的论文也有一块这样的研究。然后像phidata等智能体框架也是包含了这部分功能的。最后一点就是我们输出侧的防御。同样的,传统的各种防御、各种的内容过滤手段都可以使用。然后基于大模型的特点,我们可以再加上其他的检查。我们的提示词,我们的私有数据泄露各方面的检查。以及针对大模型幻觉的问题,我们去判断是否有事实性错误,是否脱离话题,是否给出了乱码文本,不正确的格式,错误的代码等等系列检查。那么具体有哪些安全项目能够加固我们应用呢?我们可以用护栏项目,可以看到它整体的设计思路跟我们前面给出的那个抽象的模型是一样的。它可以对你的输入、输出都做一个检测和防护,当然它的一些检测项可能会比较简单一点。

「Agent 共学」之coze模板搭建大赛

评审方:扣子、火山引擎分数构成:总分(100分)=智能体评分(70%)+说明文档评分(30%)智能体评分维度:规范性(20分):考察智能体基础的基础信息、搭建是否规范,包括开场白设置是否简明清晰;交互、信息使用等是否符合活动要求。专业性(30分):智能体是否有实用的落地场景,能否解决所属专业领域内的问题。技术性(30分):智能体搭建完整度,功能设计的逻辑性、技术实现的成熟度以及整体方案的稳定性。考察Bot是否充分利用了扣子专业版的各项功能,如插件工具、知识库、数据库记忆能力和工作流设计等,Bot整体功能是否可用且稳定。体验性(20分):考察智能体的用户体验质量,包括交互自然度、响应及时性和准确性等。说明文档评分维度:作品创意(40分):智能体搭建的创意思路。实现原理与功能(40分):整体编排逻辑,各功能实现原理。文档结构(20分):结构完整,语言简洁,逻辑清晰。

Cookbook: Claude2 中文精读

Claude经过专门的人工智能和人类反馈训练,以保证其无害性。(有关更多信息,请参阅我们的文章《Claude规则》)。这种训练使其成为筛查涉及暴力、非法或色情活动的消息的良好工具。这是一个评估用户消息是否包含不适当内容的示例提示。llm-prompt-good人类:一个人类用户正在与人工智能进行对话。该用户正在向人工智能提出一系列问题或请求一系列任务。以下是用户最近的请求:<content>{{CONTENT}}</content>如果用户的请求涉及有害、色情或非法活动,请回复(Y)。如果用户的请求不涉及有害、色情或非法活动,请回复(N)。助手:(Claude在这里的回答可以传递给另一个提示,说明在回答Y或N的情况下该怎么做。

Others are asking
目前有什么ai可以审核文件
目前有以下几种 AI 可以审核文件: 1. AI Review:这是一项功能,可让您查看代码库中的最近更改以捕获任何潜在的错误。您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天以获取详细信息。为了让其对您有利,您可以为 AI 提供自定义说明以专注于特定方面,比如性能。目前有几个选项可供选择进行审核,如审查工作状态、审查与主分支的差异、审查上次提交。 2. 在专利审查方面: 专利检索与分类:AI 可以帮助进行高效的专利检索和分类,通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 专利分析和评估:AI 可以分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 自动化专利申请:AI 可以帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 专利图像和图表分析:AI 可以分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 3. Midjourney:今天早上 3 小时前 MJ 将测试全新的“外部图像编辑器、图像重纹理化功”能以及下一代 AI 审核系统。图像编辑器允许您从计算机上传图像,然后扩展、裁剪、重绘、添加或修改场景中的元素,还推出了“图像重纹理化模式”。AI 审核系统将从整体上检查您的提示、图像、绘制蒙版以及生成的输出图像。但在第一个发布阶段,这些功能仅开放给已生成至少 10,000 张图像的用户(年度会员可用)以及过去 12 个月内一直是月度订阅用户的用户。
2025-03-15
如何使用AI审核文件格式
以下是关于如何使用 AI 审核文件格式以及如何利用 AI 写课题的相关信息: 如何使用 AI 审核文件格式: Midjourney 正在测试全新的“外部图像编辑器、图像重纹理化功能”以及下一代 AI 审核系统。 1. 图像编辑器:允许从计算机上传图像,然后扩展、裁剪、重绘、添加或修改场景中的元素。还推出了“图像重纹理化模式”,可通过文本提示和区域选择来控制所有图像编辑操作,且兼容多种功能。 2. AI 审核系统:这是一个更加智能、细致的 V2 审核系统,会从整体上检查提示、图像、绘制蒙版以及生成的输出图像。但仍处于早期测试阶段,MJ 正在尽力优化其遵循的规则。 3. 使用规则:由于这些功能很新,MJ 希望给社区和人工审核团队一个适应时间。在第一个发布阶段,这些功能开放给以下社区群体: 已生成至少 10,000 张图像的用户,年度会员可用。 过去 12 个月内一直是月度订阅用户的用户。 如何利用 AI 写课题: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-03-15
AI合规审核,产品包装信息如何借助AI进行智能审核
利用 AI 进行产品包装信息的智能审核,可以参考以下类似的方法和步骤: 1. 数据收集与分析:利用 AI 工具收集和分析大量的产品包装信息数据,包括市场上已有的成功案例、相关法规要求等,以了解常见的模式和问题。 2. 关键词提取与匹配:通过 AI 提取产品包装中的关键信息,并与合规要求的关键词进行匹配,快速筛选出可能存在问题的部分。 3. 图像识别与内容审查:运用 AI 图像识别技术审查包装上的图片、图标等元素,确保其符合相关规定,同时对文字内容进行深度分析。 4. 法规库对接:将 AI 系统与最新的法规库进行对接,实时更新审核标准,保证审核的准确性和及时性。 5. 风险评估与预警:AI 可以根据分析结果评估包装信息的合规风险,并及时发出预警,提示修改。 6. 个性化审核模型:根据不同产品类型和行业特点,训练个性化的 AI 审核模型,提高审核的针对性和准确性。 7. 反馈与优化:根据审核结果和用户反馈,不断优化 AI 模型,提高审核的质量和效率。
2025-01-13
AI合规审核,产品保证信息如何借助AI进行只能审核
以下是关于借助 AI 进行产品保证信息合规审核的一些建议: 1. 建立用户的举报和响应机制:在网站建立相关投诉举报机制,如设置侵权举报按钮,简化举报流程,并建立快速响应团队,负责评估收到的侵权举报,并在必要时采取法律行动。 2. 对用户进行潜在风险提示,明确用户责任与义务:在用户协议中详细列出禁止侵权行为的条款,并明确违反协议的法律后果。通过用户教育活动,如在线研讨会、指南和常见问题解答,提高用户对版权的认识。 3. 企业应当深入钻研相关法律法规,深化版权合规流程: 定期组织知识产权法律培训,确保团队成员对相关法律法规有深刻理解,涵盖适用于 AI 生成内容的版权法、AI 创新的专利申请策略,以及对国际知识产权法律差异的理解等内容。 建立专门的法律合规团队,其职责不仅是监控,还需主动解释新法律变动对公司运营的影响,包括对新立法进行影响分析、从法律角度对产品开发提供建议,以及制定内部政策以指导公司对法律更新的响应。 制定严格的数据来源审核流程,确保所有用于训练 AI 的数据均获得明确的版权授权。对于 AI 生成的内容,应实行版权审核机制,以确保这些内容要么是原创的,要么已经得到授权使用。 4. 建立企业内容过滤与监控系统:开发或采用先进的内容识别技术,如图像识别和文本匹配,自动识别并过滤潜在的侵权内容。同时,建立内容监控小组,负责人工审核由用户生成的内容,确保过滤系统的准确性。通过结合使用技术和人工审核,提高识别侵权内容的能力,保护企业和用户免受侵权风险。
2025-01-13
目前字节有哪些可以运用到安全审核业务的大模型?
字节在安全审核业务中可能运用到的大模型包括: 1. Claude2100k 模型,其上下文上限是 100k Tokens,即 100000 个 token。 2. ChatGPT16k 模型,其上下文上限是 16k Tokens,即 16000 个 token。 3. ChatGPT432k 模型,其上下文上限是 32k Tokens,即 32000 个 token。 大模型的相关知识: 1. 大模型中的数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 2. 以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”指用于表达 token 之间关系的参数多,例如 GPT3 拥有 1750 亿参数。 3. 大模型的架构包括 encoderonly(适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,典型使用包括故事写作和博客生成,众多 AI 助手基本都来自此架构)。大模型的特点包括预训练数据非常大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级数据进行预训练)、参数非常多(如 Open 在 2020 年发布的 GPT3 已达到 170B 的参数)。
2024-12-25
目前字节有哪些可以运用到审核安全业务的ai?
字节在审核安全业务方面可以运用的 AI 包括: 1. OpenAI 的审核(Moderation)Endpoint:可用于检查内容是否符合使用策略,其模型分为 hate(表达、煽动或宣扬基于种族、性别等的仇恨内容)、hate/threatening(仇恨内容且包括对目标群体的暴力或严重伤害)、selfharm(宣扬、鼓励或描绘自残行为)、sexual(旨在引起性兴奋的内容)、sexual/minors(包含未满 18 周岁的个人的色情内容)、violence(宣扬或美化暴力或歌颂他人遭受苦难或羞辱的内容)、violence/graphic(以极端血腥细节描绘死亡、暴力或严重身体伤害的暴力内容)等类别。在监视 OpenAI API 的输入和输出时,可以免费使用审查终结点,但目前不支持监控第三方流量,且对非英语语言的支持有限。 2. 专利审查方面的 AI: 专利趋势分析和预测:AI 可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。示例平台如 Innography、PatSnap。 具体 AI 应用示例: Google Patents:使用 AI 技术进行专利文献的全文检索和分析,提高了专利检索的准确性和效率。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地进行专利检索、分类和分析,减少了人工工作量,提高了专利审查的效率和准确性。 其他应用: 专利检索与分类:通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 专利分析和评估:分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 自动化专利申请:帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 专利图像和图表分析:分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
想要做一节讲如何用智能体做企业数字化转型的课程,如何设计
以下是关于如何设计用智能体做企业数字化转型课程的建议: 一、参考案例 1. 李国宝的相关经验 具有丰富的从业经验,包括通信工程、数据通信网络培训、创业、网络安全解决方案及培训、AI 课程开发与培训等。 开发过面向不同群体的 AI 课程,如《数字化转型实践》面向传统企业数字化、AI 赋能转型。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用课程 从零开始教学做应用界面,先基础教学,再涉及特定应用。 介绍当前承接业务,包括辅导、培训、定制及企业 AI 落地等。 挖掘用户对 AI 应用的功能需求,如对交互界面的需求。 二、课程设计要点 1. 对于企业管理者 AI 辅助决策:在小规模决策中使用 AI 分析工具,以其分析结果作为决策参考。 员工培训计划:制定 AI 工具使用的培训计划,帮助团队成员了解日常工作中如何有效利用 AI。 流程优化:识别公司中可能受益于 AI 自动化的重复性任务,从小流程开始测试 AI 解决方案的效果。 AI 伦理和政策:制定公司的 AI 使用政策,确保 AI 应用符合伦理标准和法律要求。 2. 对于教育工作者 AI 辅助教案设计:尝试使用 AI 帮助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 个性化学习路径:探索使用 AI 分析学生学习数据,为不同学生制定个性化学习计划。 创新教学方法:考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 AI 素养教育:开发简单的课程模块,教导学生了解 AI 基础知识、应用领域及其对社会的影响。 三、注意事项 无论面向哪个群体,都应记住:与 AI 协作是一个学习过程。从小处着手,保持好奇心和开放态度,会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。最重要的是,始终保持批判性思维,将 AI 视为强大的工具,而不是完全依赖的解决方案。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
我是一个实体店家,我怎么能利用AI产生内容进而帮助我在流量平台拓客
以下是一些利用 AI 为实体店在流量平台拓客的方法和思路: 1. 借助抖音平台:利用抖音对实体商家的流量扶持,购买 AI 抖音发广告的软件。这需要懂软件开发的技术人员,并且熟悉抖音。 2. 利用 AI 私域做客户培育/用户旅程:通过 AI 软件自动跟进和培育客户,需求是懂软件开发的技术人员且熟悉微信。 3. 打造特定领域的 AI 工具:比如针对法律、健康、财务、教育、销售、HR 等领域,开发如“AI 合同助手”“AI 健康管家”“AI 课程生成器”“AI 销售助理”等垂类工具。 4. 作为引流者:把 AI 工具做成“公众号插件”“小程序入口”或“微信机器人”进行推广,获取分成。 5. 参考优秀作品:如商业综合体 AI 伴侣、客流诊断师、跨境商品不求人、公私域全流程内容规划师、公众号 10W+爆文工厂、营销内容文案合规检查、提示词定制神器、Nicole 咖啡门店分析师、3C 软文文案撰写、网购评论助手、万能 AI 营销助手、贴心平替推荐精灵、产品一键生成一篇高质量的知乎种草文、One thing AI 目标达成教练、润物等,从中获取灵感和思路。
2025-04-15
如何识别网页内容
识别网页内容通常可以通过以下步骤实现: 1. 内容识别:使用智能算法分析网页的 HTML 结构,确定网页的主要内容区域。 2. 文本提取:在识别出内容区域后,提取这些区域的文本内容,包括从 HTML 标签中获取可见文本,同时忽略脚本、样式和其他无需翻译的代码。 3. 预处理:对提取出的文本进行处理,清除不必要的空格、特殊字符和格式信息,进行标准化。 4. 翻译调用:将预处理后的文本拼接到 Prompt 模板中请求相关模型的 API 进行翻译。 5. 结果整合:翻译完成后,将原文和译文对照整合回网页、字幕中,常见的展示形式有原文保持不变,译文以悬浮框、下划线注释或平行文本呈现。 6. 用户界面交互:用户可通过鼠标悬停、点击等操作控制翻译的显示与否,工具会根据用户操作实时显示或隐藏译文。 另外,在获取网页内容时,初版提示词实验中对大模型对话产品的外链解析能力依赖较大,但这种方式易受平台反爬机制制裁。转换思路,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定且经济的解决方案。开发时,可拿着初版提示词询问 AI 来确定需要插件获取哪些网页元素。例如 SeeAct 能力可以在多种不同网站上识别网页上的各种元素,执行不同任务。
2025-04-15
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
mcp 的内容
MCP(模型上下文协议)是一种创新的开放协议,由 Anthropic 公司在 2024 年 11 月推出并开源。 其主要特点和功能包括: 统一了交互标准,是链接所有 AI 应用与工具的桥梁,兼容所有 AI 应用。 具有三大功能:工具(Tools),底层使用 Function call 实现,与 OpenAI 格式兼容;资源(Resources),为 AI 提供参考信息;提示词(Prompts),预设对话模板。 主要接口路径包括获取工具列表、调用工具、获取资源列表、读取资源内容、获取提示词列表、获取提示词内容等。 转换步骤包括客户端向 MCP 服务器请求工具列表,将 MCP 工具定义转换为 Function call 格式,发送 Function Call 定义给 LLM,接收 LLM 生成的 Function call,将 Function call 转为 MCP 工具调用,发送工具调用结果给 LLM。 MCP 就像一个“转接头”或“通用插座”,其核心作用是统一不同外部服务,通过标准化接口与 AI 模型对接。它与传统 API 的关键区别在于: 单一协议:MCP 像一个统一接口,只要一次整合,就能连接多个服务。 动态发现:AI 模型能自动识别并使用可用的工具,不用提前写死每个接口。 双向通信:MCP 支持类似 WebSockets 的实时双向通信,模型不仅能查询数据,还能主动触发操作。 MCP 最早由 Anthropic 公司开发,目的是帮助 AI 模型(如 Claude)更容易地连接工具和数据源,现在已成为一个开放协议,被越来越多的企业和开发者采用,逐渐成为 AI 与工具互动的新标准。 官方文档:https://modelcontextprotocol.io/
2025-04-13
知识库中的LangChain和LangGraph的内容有哪些 ?
以下是关于 LangChain 和 LangGraph 的相关内容: LangChain: LangChain 是一个由 Harrison Chase 开发的开源 Python 库,旨在支持使用大型语言模型(LLM)和外部资源(如数据源或语言处理系统)开发应用程序。 它提供了标准的接口,与其他工具集成,并为常见应用程序提供端到端链。 设计主张集中在模块化组件上,这些组件提供用于使用 LLM 的行为抽象,并为每个抽象提供实现的集合,从而允许开发人员构造新链或实现现成的链。 LangChain 和 RAG 的关系: LangChain 是一个用于构建高级语言模型应用程序的框架,提供了实现 RAG 所必需的工具和组件。 RAG 即检索增强生成,是一种结合了检索(检索外部知识库中相关信息)和生成(利用 LLM 生成文本)的技术。 LangChain 作为框架,与 RAG 的关系包括:是框架与技术的关系,允许通过模块化组件构建 RAG 应用程序,简化开发过程,提高性能,支持构建复杂的 RAG 应用。 关于大模型 RAG 应用中的 LangChain: 有从产品视角出发的分享,包括项目背景、初步体验和评测结果等。 预计会分成 3 篇分享,分别是 LangChain 框架初体验、调优思路分享、如何测评。
2025-04-12