Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

生成式 AI 的人机协同

Answer

生成式 AI 的人机协同主要分为以下 3 种产品设计模式:

  1. Embedding(嵌入式):人类完成大多数工作。
  2. Copilot(副驾驶):人类和 AI 协同工作。
  3. Agent(智能代理):AI 完成大多数工作。

在 Agentic Workflow 中,不同角色的 Agent 可使用 Multiagent Collaboration 的方法,按照任务要求自主规划选择工具、流程进行协作完成任务。例如产品经理角色,其诉求可通过 Agents 拆解成多个独立任务,遵循不同工作流,生成大体符合期望的输出结果,再进行修改达到可用阶段。

从原子能力层思考,可抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,所有这些都围绕“输入”“处理”“输出”“反馈”几个词,构建最底层的信息处理逻辑,如同四个齿轮相互衔接运转,从需求输入到结果输出,围绕信息加速推动。

此外,搜索引擎作为互联网基础设施和入口,与基于大模型的聊天机器人在解决问题的目标上根本一致。自 ChatGPT 发布,其问答形式被认为将对传统搜索引擎带来颠覆。

在智能时代,软件应从简洁开始,逐渐变成无所不在的助理或智能体,辅助甚至直接完成任务,人机协作重点在于目标与结果,AI 劳动力的终极目标是完全自动化并融入人类社会。

在教育领域,ChatGPT 掀起生成式人工智能浪潮,教育圈受到影响。人机协同共创人机混合智能,培养高阶通识能力、跨学科创新思维、协作与互动,涉及知识获取与处理、多模态多样化内容、伦理辨析与讨论等方面,形成了多种教育模式和理念的发展与融合。

Content generated by AI large model, please carefully verify (powered by aily)

References

Inhai: Agentic Workflow:AI 重塑了我的工作流

AI与人的协同关系生成式AI的人机协同分为3种产品设计模式:Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理),在这3种模式下,人与AI的协作流程也是有所差异。Embedding模式:人类完成大多数工作。Copilot模式:人类和AI协同工作。Agents模式:AI完成大多数工作。Agentic Workflow驱动角色工作流变革使用Multiagent Collaboration的方法,让不同角色的Agent按照根据任务要求自主规划选择工具、流程进行协作完成一件任务。我作为一个产品经理角色,我的诉求很简单,需要完成某一个产品功能设计,这个时候通过Agents拆解成多个独立的任务,然后遵循不同的工作流,最后给我生成一份在大体上符合我期望的输出结果,我再修修改改就能够达到可用的阶段了。所以,我从原子能力层重新思考,面对这个快速变化的时代,我该如何去重塑我自己的工作流,以不变应万变呢?我抽象化拆解了大模型的一些底层能力,例如:翻译、识别、提取、格式化等等,其实所有的一些都会围绕几个词“输入”、“处理”、“输出”、“反馈”。“输入”、“处理”、“输出”、“反馈”构建了我最底层的信息处理逻辑,我把它比作四个齿轮,齿轮之间通过不同的衔接工具逐步推动运转,从需求作为输入、结果作为输出,围绕着信息加速,不断驱动我向前。重塑获取信息的方式搜索引擎作为互联网基础设施,同时也是互联网的入口,对于用户而言,从解决问题出发,搜索引擎和基于大模型的聊天机器人的目标从根本上是一致的。自2022年底ChatGPT发布,其通过问答形式被认为将对传统搜索引擎带来颠覆。

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

再往前看一步,这些AI劳动力都在承担着机械的自动化工作,软件还没法真正取代服务,它们得有适应人类社会的能力;它们必须看起来、感觉起来,就像是在与人互动;换句话说,软件在某些方面必须有灵魂,就像优秀的客服代理、销售代理或服务提供商一样。或许我们从OpenAI发布GPT-4o的最新演示中已经窥视到了未来,这才是软件和劳动市场真正融合的关键一步;虽然看上还长路漫漫,但我们正在步步的接近,具体会在第四章详细讨论。配图2.10:智能代理将改变企业组织架构智能时代,我们不能再用移动时代的模式来理解应用,本着人机交互方式越来越简单的趋势,智能应用最先应该从简洁开始,然后它们会从有形的界面中消失,变成真正无所不在的助理,或者是智能体,它们会辅助甚至直接帮我们完成任务;我们与AI协作的重点不再是过程,而是目标与结果,能完全自动化并融入人类社会就是AI劳动力的终极目标。这些数字化的灵魂将无处不在,我们的个人助理,生活中的陪伴、工作中的同事还有我们的合作伙伴,这是一个听上去有些兴奋,但又让人略感不安,却注定会到来。。

张翼然:用AI为教师减负(3H).pdf

教师的AI减负指南[heading2]ChatGPT掀起了生成式人工智能的浪潮[heading3]教育圈首当其冲[heading4]AI教师会代替人类教师么?AI如何教师提供数字资源人机协作共创人机混合智能共创培养高阶通识能力跨学科创新思维协作与互动知识获取与处理多模态多样化内容数字人文伦理辨析与讨论AIGC时代人机协同教育生态大规模自适应学习元宇宙工作场景模拟开源开放社区口耳相传身体力行示范耳濡目染言传身教私塾官学书院手抄本背诵领会注疏评点学而优则仕诵读传承家塾、私学官学、书院读书明理学以致用考试选拔国民教育学校系统科举制度印刷书籍、讲授说理考试评价广播电视教材函授讲义程序教学自学辅导因材施教终身学习教育现代化正规教育、业余教育函授教育广播电视大学数字化学习资源在线学习平台翻转课堂混合学习以学习者为中心学习无处不在教育信息化MOOC网络学习共同体智慧教育个性化智能教材智适应学习虚拟教学助理创造性评估智能校园跨机构协同育人在线教育生态系统AI+教育人机协同因材施教的深化AI赋能泛在学习人机共生理念以学生为中心终身学习跨学科融合生成式多模态自适应规模化因材施教扁平化与网络化跨学科与跨领域智能动态生成资源实时互动与辅导探究性教学伦理辨析与讨论北大

Others are asking
浅谈“生成式人工智能在中职实训课的应用”
生成式人工智能在中职实训课的应用: 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,所生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如: 文档摘要:将长篇文章或报告总结为简短、精准的摘要。 信息提取:从大量数据中识别并提取关键信息。 代码生成:根据用户的描述自动编写代码。 营销活动创建:生成广告文案、设计图像等。 虚拟协助:例如智能聊天机器人、虚拟客服等。 呼叫中心机器人:能够处理客户的电话请求。 生成式人工智能的工作方式如下: 1. 训练阶段:通过从大量现有内容(文本、音频、视频等)中学习进行训练,训练的结果是一个“基础模型”。 2. 应用阶段:基础模型可以用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练,以解决特定问题,从而得到一个量身定制的新模型。 Google Cloud 提供了相关工具,如 Vertex AI 是端到端机器学习开发平台,旨在帮助开发人员构建、部署和管理机器学习模型;Generative AI Studio 允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少;Model Garden 是一个平台,可以让用户发现 Google 的基础和第三方开源模型,并与之交互,它提供了一组 MLOps 工具,用于自动化机器学习管道。 在教育领域,从 AI 助教到智慧学伴的应用探索中,以“移动教学与促动”课程实习周为例,让教育学专业的学生了解和尝试运用教育 APP、二维码、教育游戏等技术方式开展移动教学。课程实习需要在 5 天内让非技术背景的学生分组设计课程并展示,由于学生众多,教师难以给予个性化指导,而 AI 在一定程度上补足了学生缺乏的经验。
2025-03-31
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
生成式AI的教育重构价值
生成式 AI 在教育领域具有重要的重构价值,主要体现在以下几个方面: 1. 为教师减负:通过复杂的算法、模型和规则,从大规模数据集中学习,创造新的原创内容,帮助教师减轻工作负担。 2. 创新教学方式:例如让历史人物亲自授课,知识获取不再受时空限制,提高教育效率和质量,增强学生学习兴趣。 3. 个性化教育:根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,满足学生学习需求,提高学习成果,缓解教育资源不平等问题。 4. 角色多样化:授课教师、游戏玩家、情感伴侣等服务都可以被 AI 重构。 5. 促进学生成长:人工智能生成的虚拟角色可以作为数字陪伴,给予孩子社会奖励,促进其成长和提高学习成绩。
2025-03-22
Stable Diffusion、MidJourney、DALL·E 这些生成式AI工具有什么区别
Stable Diffusion、Midjourney 和 DALL·E 这三个生成式 AI 工具主要有以下区别: 1. 开源性:Stable Diffusion 是开源的,用户可以在任何高端计算机上运行。 2. 学习曲线:Midjourney 的学习曲线较低,只需键入特定的提示就能得到较好的结果。 3. 图像质量:Midjourney 被认为是 2023 年中期图像质量最好的系统。 4. 应用场景:Stable Diffusion 特别适合将 AI 与来自其他源的图像结合;Adobe Firefly 内置在各种 Adobe 产品中,但在质量方面落后于 DALL·E 和 Midjourney。 5. 训练数据:这些工具都是使用大量的内容数据集进行训练的,例如 Stable Diffusion 是在从网络上抓取的超过 50 亿的图像/标题对上进行训练的。 6. 所属公司:DALL·E 来自 OpenAI。 在使用方面: 1. Stable Diffusion 开始使用需要付出努力,因为要学会正确制作提示,但一旦掌握,能产生很好的结果。 2. DALL·E 已纳入 Bing(需使用创意模式)和 Bing 图像创建器,系统可靠,但图像质量比 Midjourney 差。 3. Midjourney 需要 Discord,使用时需键入特定格式的提示。
2025-03-20
生成式人工智能的提示词工程
生成式人工智能的提示词工程是一门新兴学科,在生成式 AI 模型中具有重要作用。 提示词是用户与模型沟通愿望的文本界面,适用于图像生成模型(如 DALLE3、Midjourney)和语言模型(如 GPT4、Gemini)等。它可以是简单的问题,也可以是复杂的任务,包括指令、问题、输入数据和示例,以引导 AI 的响应。 提示词工程的核心是制作能实现特定目标的最佳提示词,这不仅要指导模型,还需深刻理解模型的能力和局限性及所处上下文。例如,在图像生成模型中是对期望图像的详细描述,在语言模型中可能是复杂查询。 提示词工程不仅是构建提示词,还需结合领域知识、对 AI 模型的理解及系统化方法为不同情境定制提示词,可能包括创建可根据数据集或上下文程序化修改的模板。 此外,提示词工程是迭代和探索的过程,类似于传统软件工程实践,如版本控制和回归测试。该领域发展迅速,有潜力改变机器学习的某些方面。 在商业和社会中,提示词工程师是被炒作的职位,实际可能承担了机器学习工程师的部分职责。提示词工程是一切生成式 AI 的基础,不管用于学习、写作、绘画、编程还是玩音乐等。 在使用提示词时,要记住几个基本关键点: 1. 角色/身份:告诉 AI 它需要扮演的身份,提升其“职业素养”。 2. 目标/任务以及背景:所有对话都有目的性,要交代目标背后的逻辑,包括为什么要实现目标、希望达到的结果等。
2025-03-19
生成式AI
生成式 AI(Generative AI)是一种基于深度学习技术,利用机器学习算法从已有数据中学习并生成新的数据或内容的 AI 应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。 AIGC(AI generated content)意为人工智能生成内容,又称为生成式 AI。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。能进行 AIGC 的产品项目和媒介很多,包括语言文字类(如 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等)、语音声音类(如 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等)、图片美术类(如早期的 GEN、去年大热的扩散模型带火的 Midjourney、先驱者谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等)。 SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 国内目前主要是在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管 AIGC 行业。 Gen AI/Generative AI 是“生成式人工智能”正式称呼,是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 在 2022 年宣发时,OpenAI 称其是一种模型,但在官网的帮助页面中,称其是一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。
2025-03-19
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
无人机拉横幅生成视频
以下是关于无人机拉横幅生成视频的相关内容: 使用 Adobe Firefly 生成带有文本提示和图像的视频: 1. 在 Adobe Firefly 网站(https://firefly.adobe.com/)上,选择“生成视频”。 2. 在 Generate video 页面上,在 Prompt 字段中输入文本提示。您还可以使用 Upload 部分中的 Image 选项,将图像用于第一帧,并为视频剪辑提供方向参考。添加图像以提供清晰的视觉引导,使生成的视频更紧密地与您的愿景对齐。 3. 在 General settings 部分,您可以确定 Aspect ratio 和 Frames per second。 4. 在 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。最后选择 Generate 生成。 为 AI 视频生成设计的结构化提示词模板的具体案例模板: 1. 史诗灾难场景 提示词: 2. 赛博朋克未来都市 提示词: 3. 奇幻神话场景 提示词:
2025-03-21
如何利用人工智能破解无人机通信协议
目前没有关于如何利用人工智能破解无人机通信协议的相关内容。破解无人机通信协议是不合法且不符合道德规范的行为,可能会导致严重的法律后果。在合法和合规的前提下,人工智能可以用于优化无人机的通信效率、增强通信安全性等方面。
2025-03-13
Elfe 人机共生
以下是关于“Elfe 人机共生”的相关内容: 作者 Elfe 为“人机共生挑战”创作了配图。该挑战是围绕给定主题发现和解决问题的活动,能让孩子们学会人机协作方法,获得应对未来的能力和勇气,珍视自身价值。配图是从三千个风格种子库中挑选科幻特色的若干,以“星辰大海、无尽探索”等为提示词抽卡得到。 智谱 AI 上线全新 Agent GLMPC,可图 1.5 可控生图能力上线。 南瓜博士(Elfe)在人机协作小说创作中,尝试过多种方法,包括写 agent flow 框架让 AI 自动写作和评判,但因无法认同 AI 的审美而放弃,最终选择在 GPT 页面上对话。创作过程中,先让 AI 生成大量创意,由人进行判断挑选,写作时人负责掌舵,最后人给出改进意见,AI 遵循修改,体现了小说创作中人的用处。
2025-03-05
人机交互模型
目前大模型在人机交互方面可能存在以下三种模式: 1. 以人为主导,大模型提供建议(copilot 阶段):如同副驾驶,在人做决策时提供建议,决定权在人手中。 2. 人和大模型协同工作,合作完成同一个工作(embedding 阶段):在实际工作场景中,部分小环节可由大模型完成,能提高工作效率。 3. 人指挥大模型工作(数字员工阶段):此阶段较为少见,大模型目前还不能完全独立完成具体工作,可能是工程问题或自身能力欠缺所致。 个人观点认为,当下应努力将大模型从简单提供建议转变为深度融入工作流,而数字员工阶段尚不成熟,可由其他大厂和学界先行尝试。 此外,每一次平台型技术的出现都会催生新的人机交互方式。如在智能时代,我们曾认为 ChatGPT 的 LUI(自然语言对话式界面)是交互终点,但并非如此。知名科幻电影 HER 中人类与 AI 全感知无障碍的对话形式才是我们所期望的。 OpenAI 发布的 GPT4o 是其之前所有技术的集大成者,采用新的全模态模型Omnimoda Model。通过端到端的神经网络,将视觉、语音和文本数据混合训练,而非常见的先转换为文本再处理的工程手段。GPT4o 对音频输入的平均反应时间为 300 毫秒,与人类相似,且能从音频数据中感悟人类的情绪、语调、风格等,甚至还原训练时的环境声音。但 OpenAI 未公开 GPT4o 的技术细节,唯一线索来自内部模型炼丹师的一篇博客,项目名是 AudioLM,2023 年中启动,目标是用端到端的方式扩大语音模型的能力。
2025-01-15
寻找能人机对话的AI工具
以下为您推荐一些能人机对话的 AI 工具: 1. Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质的音频,可高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种应用程序使用,能将文本转换为音频文件。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,是一套服务,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 4. Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 此外,在游戏领域,也有一些与生成式 AI 相关的应用: 1. 许多初创公司正考虑使用生成性 AI 来创建可互动的可信角色,如 Charisma.ai(https://charisma.ai/)、Convai.com(https://convai.com/)、Inworld.ai(https://inworld.ai/)等,旨在为具有情感和自主权的完全渲染的 3D 角色提供动力,并提供工具以便创作者给角色设定目标。 2. 目前成功的生成性 AI 工具之一是 Runwayml.com(https://runwayml.com/),它在一个单一的软件包中汇集了一系列广泛的创作者工具。但目前还没有专为视频游戏服务的类似一体化平台。 内容由 AI 大模型生成,请仔细甄别。
2024-11-04
有什么着重于「交互」的人机交互的作品设计方案可以参考
目前暂时没有关于着重于“交互”的人机交互作品设计方案的相关内容可供参考。但一般来说,一个好的着重于交互的人机交互作品设计方案通常会考虑以下几个方面: 1. 明确用户需求和目标,深入了解用户群体的特点和行为习惯。 2. 设计直观简洁的界面,确保用户能够轻松理解和操作。 3. 提供及时有效的反馈机制,让用户清楚知道自己的操作结果。 4. 注重多模态交互,如结合语音、手势、触摸等多种交互方式。 5. 进行用户测试和迭代优化,不断改进交互体验。
2024-10-26
作为一个产品经理,我现在要设计一个企业内的销售培训智能体,我手里有产品知识、销售基础知识,我该怎么设计,是只做rag还是做多智能体协同?
以下是为您设计企业内销售培训智能体的一些建议: 首先,了解多智能体模式的设置。它包括全局设置和多个代理之间的编排协调两个核心部分。全局设置涵盖角色设定与回复逻辑、记忆管理以及对话体验等,其中人物设定与回复逻辑应侧重于角色塑造。在智能体的交互流程设计上,要形成完整的互动链条,当用户意图未满足跳转条件时,保持与当前智能体的沟通。设计多轮协作的智能体时,应将其交互设计为闭环结构,以确保用户能自由切换。 其次,动手实践制作智能体。对于 Chat GPT 版本,可按以下步骤:点击“浏览 GPTs”按钮,点击“Create”按钮创建,使用自然语言对话或手工设置进行具体配置,然后调试并发布。对于 Chat GLM 版本,点击“创建智能体”按钮,输入智能体描述,可粘贴准备好的提示词模板,其配置可自动生成,可根据需求调整并上传本地文件作为知识库。 然后,考虑多智能体协同的概念。在处理复杂任务时,单智能体可能面临提示词修改和逻辑不清晰的问题。多智能体协作如吴恩达所举例,每个智能体被赋予不同身份,互相合作对话,能模拟现实工作场景,成为复杂系统,但可能存在效率不高的情况。 最后,您可以根据实际情况选择是采用 RAG 还是多智能体协同。如果任务相对简单,RAG 可能足够;若任务复杂,涉及多个环节和角色的协作,多智能体协同可能更合适。您还可以通过具体的例子,如旅游场景中负责景点推荐、路线规划和食宿安排的三个智能体,来更好地理解和设计。
2025-03-16
一个尽可能完美的AGI时代的多Agents协同工作平台应该具备怎样的能力设计?
一个尽可能完美的 AGI 时代的多 Agents 协同工作平台通常应具备以下能力设计: 1. 融合 RL(强化学习)与 LLM(大型语言模型)思想:在多 Agent 情境下,形成复杂多轮会话及协作行动过程,为系统二进行大规模的过程学习提供路径。同时,LLM 能从 RL 过程中习得新的、足够新颖的策略,例如像 AlphaGO 那样通过自博弈创新策略并快速反馈奖励,最终达成任务目标。 2. 具备多项优势: 适配国内外主流开源及闭源大语言模型,支持多模型混合使用,构建企业级场景服务生态,提供场景化解决方案。 拥有灵活可视化无代码应用构建、TexttoAgent 技术,构建便捷,上手简单,操作高效。 能够即时发布上线,支持发布为网页/小程序/API 等多种形态,快速部署 Agent 应用。 提供企业级安全访问控制,依据 Agent 权限控制数据访问,通信过程加密,防止数据泄露风险。 支持多 Agents 协作,构建知识工作者的人机协作流水线,满足复杂业务场景需求。 3. 允许使用自然语言制定 Agent 及其交互规则,并引入低延时的 Realtime API:即使没有专业编程技能,只要能用清晰的自然语言描述出各个 Agents 具备的行为和功能,就可以快速制作多 Agents 应用或创建代理式工作流。例如在一个简单场景中,可设置接待员和写诗的 Agents 并实现交互。
2025-03-12
AI与人的协同关系
AI 与人的协同关系主要体现在以下几个方面: 1. 生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,在这 3 种模式下,人与 AI 的协作流程有所差异。其中,Embedding 模式下人类完成大多数工作,Copilot 模式下人类和 AI 协同工作,Agents 模式下 AI 完成大多数工作。 2. 可以使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如产品经理角色,可通过 Agents 拆解任务,遵循不同工作流生成大体符合期望的输出结果,再进行修改达到可用阶段。 3. 应从原子能力层重新思考,重塑工作流。可抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,围绕“输入”“处理”“输出”“反馈”构建最底层的信息处理逻辑。 4. 重塑获取信息的方式,搜索引擎和基于大模型的聊天机器人在解决用户问题的目标上从根本上是一致的。 5. AGI 发展初期,与人脑相比仍有短板,需要向人学习,同时“人的模型”更重要的是解决 AI 与人配合的问题,实现 1+1>2 的效果。但目前如何达到“人的模型”还未知,可能需要在“世界模型”基础上加入个人大量多样的数据。 6. 在未来商业模式中,AI 原生应用包括广义语言的万能翻译机、想象力与创造力、AI 使用工具及相互合作、AI 微决策、AI 与人合作等方面。在相当长时间里,AI 首先要解决的是与人合作的问题,这需要“人的模型”和“人的数据”,让 AI 理解与之配合的人类。
2024-12-25
大小模型协同有哪些设计,具体应用有哪些呢?
大小模型协同的设计主要包括以下方面: 1. 大型模型方面: 大型语言模型:专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,在更多样化的任务中应用。 2. 小型模型方面:通常是被设计来完成特定任务的。 其具体应用包括: 1. 人机协同模式: 模式一:以人为主导,大模型提供建议(copilot 阶段),如同副驾驶,开车时提供建议,决定权在人手中。 模式二:人和大模型协同工作,合作完成同一个工作(embedding 阶段),在实际工作场景中,一些小环节由大模型完成,提高效率。 模式三:人指挥大模型工作(数字员工阶段),但此阶段目前少见,大模型还不能完全独立完成具体工作,可能是工程或大模型能力欠缺导致。 当下努力方向应是从简单使用大模型得到建议,转变为让大模型深度融入工作流,形成有高价值的一套 agent。数字员工阶段尚不成熟,可由其他大厂和学界先多尝试。
2024-11-13
大小模型协同有哪些数据
大小模型协同的数据来源广泛且多样,主要包括以下方面: 大模型方面: 预训练数据非常大,往往来自于互联网,涵盖论文、代码以及可爬取的公开网页等,通常采用 TB 级别的数据进行预训练。 像 GPT3 这样的大模型参数众多。 例如 Gemini 模型,其预训练数据集使用来自网络文档、书籍、代码的数据,并包括图像、音频和视频数据。 小模型方面: 针对特定任务进行训练,数据主要由与任务相关的内容组成,如专门识别猫或狗的模型,其训练数据主要是猫猫狗狗的照片。 大模型具有更广泛的应用范围和更多的通识知识,能处理多种不同任务;小模型在特定任务上表现出色。但大模型的知识来源于有限的训练数据,并非无限,且知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。
2024-11-13
协同办公系统推荐
以下是根据你的需求为你生成的文章: 协同办公系统推荐 协同办公系统是一种将团队成员、流程和工具集成到一个平台上的软件,旨在提高团队的工作效率和协作能力。下面是几种常见的协同办公系统推荐: 1. 产品管理工具:如 Aha!、ProductPlan 等,帮助产品经理从概念到发布管理整个产品生命周期。 2. 协作工具:如 Google Docs、Microsoft Office 365,支持团队协作和文档共享。 3. 项目管理软件:如 JIRA、Trello,用于任务分配和进度跟踪。 4. 市场研究工具:如 Google Trends、SEMrush,分析市场趋势和用户行为。 5. 用户调研工具:如 SurveyMonkey、Typeform,收集用户反馈和需求。 6. 数据分析工具:如 Tableau、Power BI,对市场数据进行可视化分析。 7. 思维导图软件:如 MindMeister、XMind,帮助组织思路和概念。 8. 流程图软件:如 Lucidchart、Visio,绘制产品功能和流程图。 9. 文档模板:使用现成的 MRD 模板作为起点,可以在网上找到多种 MRD 模板。 10. 版本控制工具:如 Git、SVN,管理文档的不同版本。 使用这些协同办公系统可以提高团队的工作效率和协作能力,同时也有助于提高团队之间的沟通效率和文档的可管理性。
2024-05-23