Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

各个国家对生成式人工智能所持态度

Answer

以下是各个国家对生成式人工智能所持的态度:

  • 欧洲:《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区。执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。
  • 美国:政府官员对生成式人工智能技术表现出兴趣,在评估其带来的机会的同时,也警示潜在风险。政府机构开始就相关问题征求公众意见,预计未来几个月内将有更多行动。例如,白宫宣布将采取更多措施加强美国的人工智能研究、开发和部署。此外,美国对中国实施了更严格的出口管制和投资限制。
  • 中国:是第一个开始制定生成式人工智能监管框架的国家,从 2022 年开始陆续出台全面指南,如今审查机构正在介入。持续生产 SOTA 模型,由国家互联网信息办公室监督。政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。禁止访问 Hugging Face 等国外网站,但官方批准的“主流价值观语料库”可作为训练数据源。

在移动端应用领域,尽管硅谷被视为 AI 核心地带,但世界各地都在积极构建相关产品。在生成式 AI 网页端和移动端产品的开发方面,不同地区的分布有所不同。例如,超过 30%的生成式 AI 网页端产品起源于美国湾区,而在移动应用开发者中,仅有 12%的团队设立于此。同样,超过一半的顶级生成式 AI 网页端产品在美国开发,而不到 1/3 的移动端应用源自美国本土。在全球范围内,包括亚洲(如中国、印度、韩国等)、大洋洲(如澳大利亚)、欧洲(如英国、法国、德国等)、中东(如以色列、土耳其等)的许多国家和地区都在参与生成式 AI 的发展。

Content generated by AI large model, please carefully verify (powered by aily)

References

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

《欧盟人工智能法案》获得批准,正式生效随着该法案的通过,**欧洲成为世界上第一个全面采用人工智能监管框架的地区。**执行将分阶段进行,对“不可接受的风险”(例如欺骗、社会评分)的禁令将于2025年2月生效。美国大型实验室努力应对欧洲监管欧盟人工智能法案和长期以来的《通用数据保护条例》(GDPR)对隐私和数据传输的要求相结合,使美国实验室难以适应其服务。Anthropic的Claude在2024年5月之前才向欧洲用户开放使用,而Meta不会为欧洲客户提供多模态模型。与此同时,苹果公司正在反对欧盟的数字市场法案,声称其互操作性要求与它在隐私和安全方面的立场不兼容。因此,苹果公司推迟了在欧洲推出Apple Intelligence。中国人工智能监管进入执行时代我国是第一个开始制定生成式人工智能监管框架的国家,从2022年开始陆续出台全面指南,如今审查机构现在正在介入。我国持续生产SOTA模型,由国家互联网信息办公室监督。政府希望模型同时避免给政治问题提供“错误”的答案,在发布模型之前,必须提交其模型进行测试,以校准拒绝率。虽然禁止Hugging Face等国外网站访问,但官方批准的“主流价值观语料库”可以作为训练数据源。美国对中国实施更严格的出口管制和投资限制美国商务部发出了信函,要求美国制造商停止向我国半导体制造商进行最先进设施的销售。不仅如此,美国正在采取措施阻止或限制(包括半导体、国防、监控和音频、图像和视频识别)的中国初创企业的投资。美国不仅禁止了某些物品的出口,还在限制期限前向国际合作伙伴施压。这影响到了NVIDIA、Intel和ASML。

美国 AI 监管动态.pdf

[heading2](AI), a field that currently operates with minimal regulation. U.S. government officials, however,[content]are stepping up their interest in generative AI technology,including assessing the opportunitieswhile cautioning about potential risks.Government agencies are also beginning to seek publiccomment on these issues,where we expect to see increased activity in the coming months.生成式人工智能(AI)成为我们这个时代崛起的最先进的技术之一,该领域的运行目前处于最低程度的监管状态下。但是,美国政府官员正愈发展现出对生成式人工智能技术的24859-0192-6761.v3兴趣,他们正在评估生成式人工智能带来的机会,也警示其潜在风险。政府机构也开始就这些问题征求公众意见,预计在未来几个月内将有更多行动。For example,on May 23,the White House announced that it would be taking additional steps toenhance AI research,development and deployment in the United States,building on its May 4announcement advancing the AI Bill of Rights.例如,2023年5月23日,白宫宣布将在5月4日宣布推进《人工智能权利法案》的基础上,采取更多措施加强美国的人工智能研究、开发和部署。The recent announcement outlined three key steps the government is pursuing to promote AI:publishing an updated National Artificial Intelligence R&D Strategic Plan,soliciting publicfeedback on advancing AI research,and releasing a Department of Education report on the benefitsand risks of AI in education.This alert focuses on the first two announcements.

翻译:A16Z-TOP 100生成式AI应用

尽管硅谷被视为AI的核心地带,但世界各地都在积极构建着广受欢迎的产品。这一点在移动端应用领域尤为显著。虽然我们的榜单中超过30%的生成式AI网页端产品起源于湾区,但在移动应用开发者中,仅有12%的团队设立于此。同样,虽然超过一半的顶级生成式AI网页端产品是在美国开发的,但不到1/3的移动端应用源自美国本土。北美(美国)加利福尼亚州:门洛帕克、山景城、奥克兰、帕洛阿尔托、红木城、旧金山、圣马特奥佛罗里达州:迈阿密、圣彼得堡爱达荷州:默里迪恩伊利诺伊州:芝加哥马萨诸塞州:剑桥明尼苏达州:明尼阿波利斯纽约州:布鲁克林、纽约市宾夕法尼亚州:森特瓦利德克萨斯州:休斯顿华盛顿州:雷德蒙德怀俄明州:谢里丹北美(加拿大)蒙特利尔、多伦多亚洲中国:北京香港:九龙印度:古尔冈马来西亚:雪兰莪巴基斯坦:伊斯兰堡新加坡:新加坡韩国:首尔越南:河内、胡志明市大洋洲澳大利亚:布里斯班、凯恩斯、悉尼欧洲英国:剑桥、伦敦法国:巴黎德国:格林瓦尔德、拉博埃意大利:米兰波兰:克拉科夫罗马尼亚:布加勒斯特瑞典:斯德哥尔摩乌克兰:基辅中东塞浦路斯:尼科西亚以色列:本布里克、耶路撒冷土耳其:伊斯坦布尔、伊兹密尔

Others are asking
浅谈“生成式人工智能在中职实训课的应用”
生成式人工智能在中职实训课的应用: 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,所生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如: 文档摘要:将长篇文章或报告总结为简短、精准的摘要。 信息提取:从大量数据中识别并提取关键信息。 代码生成:根据用户的描述自动编写代码。 营销活动创建:生成广告文案、设计图像等。 虚拟协助:例如智能聊天机器人、虚拟客服等。 呼叫中心机器人:能够处理客户的电话请求。 生成式人工智能的工作方式如下: 1. 训练阶段:通过从大量现有内容(文本、音频、视频等)中学习进行训练,训练的结果是一个“基础模型”。 2. 应用阶段:基础模型可以用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练,以解决特定问题,从而得到一个量身定制的新模型。 Google Cloud 提供了相关工具,如 Vertex AI 是端到端机器学习开发平台,旨在帮助开发人员构建、部署和管理机器学习模型;Generative AI Studio 允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少;Model Garden 是一个平台,可以让用户发现 Google 的基础和第三方开源模型,并与之交互,它提供了一组 MLOps 工具,用于自动化机器学习管道。 在教育领域,从 AI 助教到智慧学伴的应用探索中,以“移动教学与促动”课程实习周为例,让教育学专业的学生了解和尝试运用教育 APP、二维码、教育游戏等技术方式开展移动教学。课程实习需要在 5 天内让非技术背景的学生分组设计课程并展示,由于学生众多,教师难以给予个性化指导,而 AI 在一定程度上补足了学生缺乏的经验。
2025-03-31
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
生成式AI的教育重构价值
生成式 AI 在教育领域具有重要的重构价值,主要体现在以下几个方面: 1. 为教师减负:通过复杂的算法、模型和规则,从大规模数据集中学习,创造新的原创内容,帮助教师减轻工作负担。 2. 创新教学方式:例如让历史人物亲自授课,知识获取不再受时空限制,提高教育效率和质量,增强学生学习兴趣。 3. 个性化教育:根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,满足学生学习需求,提高学习成果,缓解教育资源不平等问题。 4. 角色多样化:授课教师、游戏玩家、情感伴侣等服务都可以被 AI 重构。 5. 促进学生成长:人工智能生成的虚拟角色可以作为数字陪伴,给予孩子社会奖励,促进其成长和提高学习成绩。
2025-03-22
Stable Diffusion、MidJourney、DALL·E 这些生成式AI工具有什么区别
Stable Diffusion、Midjourney 和 DALL·E 这三个生成式 AI 工具主要有以下区别: 1. 开源性:Stable Diffusion 是开源的,用户可以在任何高端计算机上运行。 2. 学习曲线:Midjourney 的学习曲线较低,只需键入特定的提示就能得到较好的结果。 3. 图像质量:Midjourney 被认为是 2023 年中期图像质量最好的系统。 4. 应用场景:Stable Diffusion 特别适合将 AI 与来自其他源的图像结合;Adobe Firefly 内置在各种 Adobe 产品中,但在质量方面落后于 DALL·E 和 Midjourney。 5. 训练数据:这些工具都是使用大量的内容数据集进行训练的,例如 Stable Diffusion 是在从网络上抓取的超过 50 亿的图像/标题对上进行训练的。 6. 所属公司:DALL·E 来自 OpenAI。 在使用方面: 1. Stable Diffusion 开始使用需要付出努力,因为要学会正确制作提示,但一旦掌握,能产生很好的结果。 2. DALL·E 已纳入 Bing(需使用创意模式)和 Bing 图像创建器,系统可靠,但图像质量比 Midjourney 差。 3. Midjourney 需要 Discord,使用时需键入特定格式的提示。
2025-03-20
生成式人工智能的提示词工程
生成式人工智能的提示词工程是一门新兴学科,在生成式 AI 模型中具有重要作用。 提示词是用户与模型沟通愿望的文本界面,适用于图像生成模型(如 DALLE3、Midjourney)和语言模型(如 GPT4、Gemini)等。它可以是简单的问题,也可以是复杂的任务,包括指令、问题、输入数据和示例,以引导 AI 的响应。 提示词工程的核心是制作能实现特定目标的最佳提示词,这不仅要指导模型,还需深刻理解模型的能力和局限性及所处上下文。例如,在图像生成模型中是对期望图像的详细描述,在语言模型中可能是复杂查询。 提示词工程不仅是构建提示词,还需结合领域知识、对 AI 模型的理解及系统化方法为不同情境定制提示词,可能包括创建可根据数据集或上下文程序化修改的模板。 此外,提示词工程是迭代和探索的过程,类似于传统软件工程实践,如版本控制和回归测试。该领域发展迅速,有潜力改变机器学习的某些方面。 在商业和社会中,提示词工程师是被炒作的职位,实际可能承担了机器学习工程师的部分职责。提示词工程是一切生成式 AI 的基础,不管用于学习、写作、绘画、编程还是玩音乐等。 在使用提示词时,要记住几个基本关键点: 1. 角色/身份:告诉 AI 它需要扮演的身份,提升其“职业素养”。 2. 目标/任务以及背景:所有对话都有目的性,要交代目标背后的逻辑,包括为什么要实现目标、希望达到的结果等。
2025-03-19
生成式AI
生成式 AI(Generative AI)是一种基于深度学习技术,利用机器学习算法从已有数据中学习并生成新的数据或内容的 AI 应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。 AIGC(AI generated content)意为人工智能生成内容,又称为生成式 AI。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。能进行 AIGC 的产品项目和媒介很多,包括语言文字类(如 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等)、语音声音类(如 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等)、图片美术类(如早期的 GEN、去年大热的扩散模型带火的 Midjourney、先驱者谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等)。 SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 国内目前主要是在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管 AIGC 行业。 Gen AI/Generative AI 是“生成式人工智能”正式称呼,是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 在 2022 年宣发时,OpenAI 称其是一种模型,但在官网的帮助页面中,称其是一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。
2025-03-19
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
各个国家对gpt所持态度
不同国家对 GPT 的态度有所不同。意大利当局因担心隐私侵犯问题,认为 OpenAI 不符合欧盟的数据保护条例 GDPR,禁止了 ChatGPT 在意大利境内的使用,并可能对 OpenAI 处以巨额罚款。而对于 GPT 的发展,也有一些更平衡的观点值得关注,例如 Jon Stokes 关于 AI 安全性的技术和人类学的概述。此外,还有提议各国政府联合起来,建立全球人工智能研究的协作中心。
2024-12-26
各个国家对人工智能的接受态度
不同国家对人工智能的接受态度存在差异: 美国:稳居对人工智能兴趣的榜首,在 12 个月里,其人工智能行业访问量达 55 亿次,占总流量的 22.62%。美国拥有超过 1.8 万亿美元的全球领先科技市场。 印度:紧随美国之后,访问量达 21 亿人次,占总流量的 8.52%。印度是全球最大的 IT 和 BPO 服务出口国之一。 印度尼西亚、菲律宾和巴西:兴趣水平相似,去年产生了 1.3 至 14 亿人次的访问量。巴西在南美洲处于领先地位,其产生的流量几乎是排在第二位的英国、日本和德国的两倍。 中国:尽管拥有 14 亿人口,但未跻身前 20 名。 从全球视角看教育与 AI 的融合程度: 北欧国家如芬兰,全社会重视教育和技术创新,政府重点投资教育技术研发和应用,实现个性化教学,培养学生批判性思维和解决复杂问题的能力。 许多发展中国家,尤其是撒哈拉以南的非洲国家,在教育资源基础配置上严重不足,基础设施薄弱,电力和网络连接不可靠,难以实现 AI 技术的高级应用。 在 AI 地缘政治方面: 最先进的 AGI 世界模型不开源,开源模型会落后闭源一个代际,但服务更广泛的专业应用。 美国对中国的硬件 科技限制进一步升级。 AGI 对全行业科技发展起推动作用,有更好 AGI 的国家会有更快的全面技术进步。 对于 AI 的立法、监管、伦理讨论大范围落后于技术发展,全世界主要国家都急于拥有自己的 AI,目前只有欧洲有相关讨论,但也仅在纸面上,我国相关法规讨论出发点在于“对于舆论的影响”,未触及 AGI 本身的伦理问题。
2024-12-26
人工智能各个国家的态度
不同国家对人工智能的态度和相关情况如下: 欧洲:《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区。执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。 美国:大型实验室努力应对欧洲监管。美国商务部对中国实施更严格的出口管制和投资限制,包括要求美国制造商停止向我国半导体制造商进行最先进设施的销售,阻止或限制对中国初创企业的投资。 中国:是第一个开始制定生成式人工智能监管框架的国家,审查机构已介入。持续生产 SOTA 模型,由国家互联网信息办公室监督,发布模型前须提交测试以校准拒绝率。禁止访问 Hugging Face 等国外网站,但官方批准的“主流价值观语料库”可作为训练数据源。 美国在人工智能行业的访问量方面,稳居第一。在研究的 12 个月里,访问量达到 55 亿次,占总流量的 22.62%。印度紧随其后,访问量达到 21 亿人次,占总流量的 8.52%。印度尼西亚、菲律宾和巴西的兴趣水平相似,产生了 1.3 至 14 亿人次的访问量。巴西在南美洲处于领先地位,其流量几乎是排在第二位的英国、日本和德国的两倍。有趣的是,尽管中国拥有 14 亿人口,但未跻身前 20 名。
2024-12-26