Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

构建一个路由分类器AI,在工作流里面有什么好的设计方案,怎么能保证分类器进行分类准确呢

Answer

构建路由分类器 AI 的工作流设计方案如下:

  1. 内容编排:在第四步中,将指令分为扩写、缩写、总结以及其他四类,设定最终的分类条件。分类器匹配到特定分支后执行相应操作,这种编排方式可过滤并避免处理不明确的指令,确保智能体准确响应用户指令。
  2. 编写具体指令:为每个指令编写具体内容,如缩写、扩写和总结三个分支,创建包含变量(即用户初始输入的原始文本)的简单指令,用花括号引用变量,系统将值赋给变量并传递给模型推理形成提示词。
  3. 最终输出:对各分支结果进行输出,输出内容相对简洁。
  4. 测试流程:首先准备用于扩写、缩写和总结三项测试的文本素材,然后逐一进行各项测试,包括扩写测试、缩写测试、总结测试和错误处理测试,以验证每个分支能否顺利执行。

要保证分类器分类准确,可以从以下方面入手:

  1. 清晰明确地设定分类条件,避免模糊和歧义。
  2. 对输入的指令进行充分的预处理和规范化,使其符合分类器的预期格式。
  3. 不断优化和调整分类器的参数和算法,以适应不同类型和复杂程度的指令。
  4. 进行大量的测试和验证,收集错误案例并进行分析改进。
Content generated by AI large model, please carefully verify (powered by aily)

References

提示词培训课——Part3

在第四步中,我们将对分类器进行内容编排。以本例为参考,我们将指令分为四类:扩写、缩写、总结以及其他。编排时,只需设定最终的分类条件。一旦分类器匹配到特定的分支,它将执行相应的操作。这样的编排方式有助于过滤并避免处理不明确的指令,确保智能体能够准确响应用户的指令。在为分类器设置好内容之后,接下来需要为每个指令编写具体内容。以当前的缩写、扩写和总结三个分支为例,我们将为每个分支创建一个简单的指令。这些简单指令中将包含一个变量,该变量即为用户在初始阶段输入的、希望进行扩写、缩写或总结的原始文本。我们通过变量引用的方式将其引入到指令中。具体书写变量时,通常使用花括号,并根据之前定义的变量名进行填写。在执行过程中,系统会将相应的值赋给该变量,随后将这个值传递给模型进行推理,形成最终的提示词。在各分支处理完毕后,我们将对每个分支的结果进行最终输出。由于这是一个示例,我们的输出内容也相对简洁。大家可以在这里看到,输出的内容基本上是之前分支处理的原始文本结果。整个测试流程首先需要准备文本素材,这些素材将用于进行扩写、缩写和总结三项测试。待素材准备就绪后,我们将逐一进行各项测试,以验证每个分支是否能够顺利执行。扩写测试:缩写测试:总结测试:错误处理测试:

Others are asking
帮我写一个可以训练的分类器代码, python 代码,目的是将样本的扰动分为 0,0.001,0.003,0.005 四类,按照以下步骤写 第一步:导入需要的库 第二步:加载位于/public/xdw/ls/signaldefense/AS/perturbed_data.npy 的数据 第三步:获取数据样本的扰动值 第四步:判断扰动值的大小,比如扰动值为 0,则加一计数 第五步:打印出判断各类扰动值的正确率
以下是为您生成的 Python 代码示例,用于实现将样本的扰动分为 0、0.001、0.003、0.005 四类的分类器: ```python import numpy as np 第一步:导入需要的库 import numpy as np 第二步:加载数据 data = np.load 第三步:获取数据样本的扰动值 perturbation_values = data 假设扰动值在第二列 第四步:判断扰动值的大小并计数 count_0 = 0 count_0_001 = 0 count_0_003 = 0 count_0_005 = 0 for value in perturbation_values: if value == 0: count_0 += 1 elif value == 0.001: count_0_001 += 1 elif value == 0.003: count_0_003 += 1 elif value == 0.005: count_0_005 += 1 第五步:计算正确率 total_samples = len accuracy_0 = count_0 / total_samples accuracy_0_001 = count_0_001 / total_samples accuracy_0_003 = count_0_003 / total_samples accuracy_0_005 = count_0_005 / total_samples print print print print ```
2024-12-05
学习开发一个针对app类型的分类器
开发一个针对APP类型的分类器涉及多个步骤,包括数据收集、数据预处理、模型选择和训练、评估和部署。以下是详细的步骤和所需工具: 步骤一:数据收集 首先,需要收集大量已分类的APP数据。这些数据可以从各种APP商店(如Google Play Store、Apple App Store)获取。数据应包括APP的名称、描述、类别等。 数据来源 Google Play Store: 可以使用Google Play API或其他爬虫工具如Scrapy获取数据。 Apple App Store: 使用App Store API获取APP数据。 示例代码(使用Google Play Scraper) ```python from google_play_scraper import app, search 搜索关键词并获取应用信息 results = search for result in results: app_id = result details = app print ``` 步骤二:数据预处理 收集的数据需要进行预处理,包括清洗、标准化和特征提取。通常会处理文本数据,如APP的描述,进行分词、去停用词等操作。 数据清洗与特征提取 文本清洗: 去除特殊字符、标点符号、HTML标签等。 分词与词向量: 使用NLTK、spaCy等进行分词,使用TFIDF或Word2Vec将文本转化为向量。 示例代码(文本处理) ```python import nltk from sklearn.feature_extraction.text import TfidfVectorizer 分词与停用词处理 def preprocess_text: tokens = nltk.word_tokenize tokens = return ' '.join TFIDF 特征提取 tfidf = TfidfVectorizer features = tfidf.fit_transform ``` 步骤三:模型选择与训练 选择合适的机器学习模型进行训练。常用的模型包括朴素贝叶斯、SVM、随机森林和深度学习模型(如RNN、BERT)。 模型选择 朴素贝叶斯: 简单且高效,适合初步尝试。 SVM: 对高维数据有效。 随机森林: 强大的分类模型。 深度学习: 适合大数据集和复杂任务。 示例代码(使用朴素贝叶斯) ```python from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score 数据集划分 X_train, X_test, y_train, y_test = train_test_split 训练模型 model = MultinomialNB model.fit 预测与评估 predictions = model.predict accuracy = accuracy_score print ``` 步骤四:模型评估与优化 使用交叉验证、混淆矩阵等方法评估模型的性能,并根据结果进行模型优化,如调参、特征选择等。 示例代码(模型评估) ```python from sklearn.model_selection import cross_val_score from sklearn.metrics import classification_report, confusion_matrix 交叉验证 scores = cross_val_score print 混淆矩阵与分类报告 print print ``` 步骤五:部署模型 训练好的模型可以使用Flask、Django等框架部署为API服务,供实际应用调用。 示例代码(Flask 部署) ```python from flask import Flask, request, jsonify import pickle app = Flask 加载模型 with open as f: model = pickle.load @app.route def predict: data = request.get_json description = preprocess_text features = tfidf.transform prediction = model.predict return jsonify if __name__ == '__main__': app.run ``` 工具推荐 数据收集: Google Play Scraper, App Store API 数据处理: NLTK, spaCy, sklearn 模型训练: sklearn, TensorFlow, PyTorch 模型部署: Flask, Django 参考文献 通过这些步骤和工具,您可以开发一个高效的APP类型分类器,并将其应用于实际业务中。
2024-06-17
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
用哪个ai平台,可以识别图像户型图,给做一个三居改四居的设计方案
目前,市面上还没有专门的 AI 平台能够直接根据图像户型图为您生成三居改四居的设计方案。但是,一些与室内设计相关的软件和平台可能会对您有所帮助,例如酷家乐、三维家等,它们具有一定的户型设计和修改功能,您可以尝试使用这些平台,并结合自己的需求和创意来完成设计方案。
2025-03-06
构建项目 ,如何通过ai生成可视化数据报表,设计方案
以下是一个通过 AI 生成可视化数据报表的设计方案: 1. 理解需求:明确查询要求,例如适应特定尺寸(如宽 1734px、高 1071px)的 TSX 代码,确保生成的组件符合尺寸要求,避免出现滚动条。 2. 生成静态代码:创建一个静态的 React 组件,将所有数据和组件进行硬编码。 3. 实现数据可视化:构建一个复杂的数据可视化平台,支持多种图表类型、实时数据更新、自定义仪表板和数据钻取功能。 4. 设计用户界面:为复杂的数据可视化平台编写 TSX 代码,界面包括多个图表、定制仪表板和实时数据更新,尺寸为宽 1734px 和高 1071px。 5. 定义 React 组件:定义一个用于渲染主界面的 React 组件,包括网格布局、图表组件、导航 UI 组件、按钮和输入字段等,并加入模拟实时更新和自定义仪表板的开关和切换等组件。 6. 规划 UI 结构:设计包含头部、侧边栏和主内容区的 UI 结构,主内容区展示多个图表,并考虑自定义控制。 7. 探索图标资源:从 'lucidereact' 提取图标,如主页、用户和搜索等,使界面更加直观和易用。
2025-02-27
我想给我的品牌设计一整套的门店设计方案,现在哪个AI工具最合适,我需要中国内地的AI工具
以下是一些适合用于品牌门店设计的中国内地 AI 工具: 1. 藏师傅推荐的流程:通过获取 Logo 图片的描述、生成图片提示词,并输入 Comfyui 工作生成。相关链接:https://www.coze.cn/s/iDec2U13/ 2. 月度榜单中的相关工具: 美图公司的开拍,具有视频生成功能。 贝因科技的妙笔工坊,属于原生个人助理。 惊叹科技的 TalkAI 练口语,用于教育。 美图公司的美图设计室,具备图片生成功能。 秘塔网络的秘塔 AI 搜索,属于智慧搜索。 3. 生成 Logo 的 AI 产品: Looka:在线 Logo 设计平台,根据用户品牌信息和设计偏好生成方案。 Tailor Brands:通过回答问题生成 Logo 选项。 Designhill:基于用户输入生成个性化 Logo 设计。 LogoMakr:提供简单易用的设计工具和 AI 建议。 Canva:提供模板和元素,有 AI 辅助设计建议。 LogoAI by Tailor Brands:根据输入快速生成 Logo 方案。 标小智:中文 AI Logo 设计工具。 您可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。在选择工具时,建议您根据自身品牌理念和视觉偏好进行尝试和定制。
2025-02-11
有什么着重于「交互」的人机交互的作品设计方案可以参考
目前暂时没有关于着重于“交互”的人机交互作品设计方案的相关内容可供参考。但一般来说,一个好的着重于交互的人机交互作品设计方案通常会考虑以下几个方面: 1. 明确用户需求和目标,深入了解用户群体的特点和行为习惯。 2. 设计直观简洁的界面,确保用户能够轻松理解和操作。 3. 提供及时有效的反馈机制,让用户清楚知道自己的操作结果。 4. 注重多模态交互,如结合语音、手势、触摸等多种交互方式。 5. 进行用户测试和迭代优化,不断改进交互体验。
2024-10-26