Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

OpenAI过去12天的发布会总结

Answer

以下是 OpenAI 过去 12 天发布会的总结:

  • 自媒体记录方面:
    • 夕小瑶科技说:o3 发布,可能影响码农工作。
    • 孔某人的低维认知:OpenAI 圣诞 12 天总评,感谢大佬赏饭。
    • MAX 01Founder:一文详解 o3,虽接近 AGI 但使用成本高。
    • 南瓜博士:使用 o3 钱包和脑子可能不够。
    • 数字生命卡兹克:OpenAI 正式发布 o3,通往 AGI 路上已无障碍。
  • 具体发布内容:
    • Day12:o3 与 o3 mini 正式亮相。
    • Day11:ChatGPT 桌面应用,Option+空格快速唤起。
    • Day10:OpenAI 发布电话倾诉功能 1-800-242-8478。
    • Day9:o1 满血版 API 和 4o 实时语音 API 更新。
    • Day8:AI 搜索功能免费开放,并支持实时语音搜索。
    • Day7:ChatGPT 全新“项目”功能发布。
    • Day6:实时视频通话&圣诞老人模式正式上线。
    • Day5:ChatGPT 与 Apple 的深度合作。
    • Day4:直播“翻车”的 Canvas。
    • Day3:Sora 终于上线,有案例和功能详解。
    • Day2:微调 O1 模型,低成本高效率。
    • Day1:强化学习微调的实操案例。
  • 宝玉日报 12 月 18 日:
    • AI 架构与技术选型的 4 条原则:选主流框架、确保测试覆盖率、避免私有框架、采用模块化设计。
    • OpenAI 12 天发布会第 9 天:o1 API 正式版速度更快成本降低,支持多种新功能;语音交互升级,引入 WebRTC 支持,处理费用降低;新增偏好微调功能和工具包,简化 API 密钥申请流程。
  • 易观分析报告预测了 AI 技术未来的关键发展方向,德邦证券报告对 OpenAI 十二日发布会进行深度总结,认为随着大模型能力提升和应用场景扩展,AI 应用商业价值有望实现,建议关注相关领域。
Content generated by AI large model, please carefully verify (powered by aily)

References

OpenAI12场发布会每日记录完整版包含视频翻译-Day1-12

自媒体记录:夕小瑶科技说:o3发布了,摔碎了码农的饭碗https://mp.weixin.qq.com/s/BeHaO1c3RN-5HFYhJ8B1mQ孔某人的低维认知:OpenAI圣诞12天总评:要感谢大佬赏饭https://mp.weixin.qq.com/s/yL2EoP-uE4Q50tTHnX5qRwMAX 01Founder:一文详解o3:无限接近AGI,但你用不起https://mp.weixin.qq.com/s/fa6Znp4qphcyiuZ-mGal4g南瓜博士:使用o3?我的钱包和脑子都不够https://mp.weixin.qq.com/s/UBSz2A_FjLXZJnRA5u9YiQ数字生命卡兹克:OpenAI正式发布o3-通往AGI的路上,已经没有了任何阻碍。https://mp.weixin.qq.com/s/fzUXLrWY7pLU5uEtrtOouQDay12 o3与o3 mini正式亮相Day11 ChatGPT桌面应用,Option+空格快速唤起Day10 OpenAI发布电话倾诉功能1-800-242-8478Day9 o1满血版API和4o实时语音API更新Day8 AI搜索功能免费开放,并支持实时语音搜索Day7 ChatGPT全新“项目”功能发布Day6实时视频通话&圣诞老人模式正式上线Day5 ChatGPT与Apple的深度合作Day4直播“翻车”的CanvasDay3 Sora终于上线,案例和功能详解Day2微调O1模型,低成本高效率Day1强化学习微调的实操案例!

宝玉 日报

?宝玉日报「12月18日」✨✨✨✨✨✨✨✨1⃣️?AI架构与技术选型的4条原则选主流框架:优先选择语料多、生成质量好的语言和框架。测试覆盖率:用AI辅助生成测试代码,确保代码质量。避免私有框架:尽量使用流行框架生成独立模块代码。模块化设计:降低耦合度,方便AI快速开发和维护。?[https://x.com/dotey/status/1869209113726529989](https://x.com/dotey/status/1869209113726529989)2⃣️?OpenAI 12天发布会第9天:开发者主题日o1 API正式版:速度更快,成本降低60%,支持视觉识别、函数调用、结构化输出等功能。语音交互升级:引入WebRTC支持,12行代码即可实现实时语音交互,音频处理费用降低60%。偏好微调功能:让AI回答更具个性化,企业AI准确率提升显著。新增Go和Java工具包,简化API密钥申请流程。?[https://x.com/dotey/status/1869166100367151452](https://x.com/dotey/status/1869166100367151452)3⃣️?Sora眼中的西施:穿越古代的浪漫邂逅Prompt描述了在繁华古代集市遇见西施的唯美场景。镜头化叙事,展现了主角与西施的心动瞬间及互动细节。?[https://x.com/dotey/status/1869087190447280303](https://x.com/dotey/status/1869087190447280303)

通往 AGI 之路

易观分析发布的《[2025年AI产业发展十大趋势报告](https://waytoagi.feishu.cn/record/ROgmrSNMxerHcUc9iuQczrY1n7B)》预测了AI技术未来的关键发展方向。报告指出,大模型技术将进入复杂推理阶段,多模态模型能力将升级,Agent将进化为超级智能体,AI原生应用将形成服务闭环,现存应用将加速拥抱AI,AIGC将赋能IP全生态,硬件将全面AI化,AI将赋能千行百业,企业需利用专有数据形成深度洞察,AI应用的深化将对企业组织能力提出新要求。德邦证券:《[AI应用产业化的开端:OpenAI十二日发布会深度总结](https://waytoagi.feishu.cn/record/GWH9rWHI4es7v5cvBcbctVuNnkG)》OpenAI发布了多个新旧产品,如Sora、高级语音、o1、Canvas等,以及全新产品如强化微调、Project、o1 API等,旨在提升AI的推理性能和多模态交互能力,朝人工通用智能(AGI)目标迈进。报告认为,随着大模型能力的提升和应用场景的扩展,AI应用的商业价值有望实现,建议关注to B/C Agent、多模态AI和推理算力等领域。

Others are asking
12个精选prompt框架
以下是 12 个精选的 prompt 框架: 1. ICIO 框架: 指令:执行的具体任务。 背景信息:提供执行任务的背景信息、上下文内容,让大模型更好地回答。 输入信息:大模型需要用到的一些信息。 输出信息:明确输出的具体信息的要求,比如字数、风格、格式。 2. BROKE 框架:通过 GPT 的设计提示,来提升整体反馈的效率。 背景:提供足够背景信息,让大模型可以理解问题的上下文。 角色设定:特定的角色,让 GPT 根据特定的角色能力的特点来形成响应。 目标:明确任务的目标,让大模型知道您想让它做什么。 结果定义:明确可以衡量的结果,让大模型清楚自己做的情况。 调整:根据具体的情况,来调整具体的结果。 3. CRISPIE 框架: 能力和角色:您期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文。 声明:简洁明了的说明希望完成的任务。 个性:回应的风格、个性或者方式。 实验:提供多个回答的示例。 另外,在潘帅分享的法律人如何用好 AI—Prompt 篇中,也提到了 Prompt 的建议框架及格式,如 CRISPE 框架: 能力与角色(Capacity and Role):比如您希望它的角色和能力,如您是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 洞察(Insight):提供背景信息和上下文,比如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 陈述(Statement):您希望 AI 做什么,比如直接明确期望 AI 完成的任务是什么。 个性(Personality):您希望 AI 以什么风格或方式回答您。 举例:以合同纠纷案件为例,要求 AI 总结此案件中双方的诉求、检索法条、预测可能的判决结果。
2025-03-26
12个精选prompt框架
以下是 12 个精选的 prompt 框架: 1. ICIO 框架: 指令:执行的具体任务。 背景信息:提供执行任务的背景信息、上下文内容,让大模型更好地回答。 输入信息:大模型需要用到的一些信息。 输出信息:明确输出的具体信息的要求,比如字数、风格、格式。 2. BROKE 框架:通过 GPT 的设计提示,来提升整体反馈的效率。 背景:提供足够背景信息,让大模型可以理解问题的上下文。 角色设定:特定的角色,让 GPT 根据特定的角色能力的特点来形成响应。 目标:明确任务的目标,让大模型知道您想让它做什么。 结果定义:明确可以衡量的结果,让大模型清楚自己做的情况。 调整:根据具体的情况,来调整具体的结果。 3. CRISPIE 框架: 能力和角色:您期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文。 声明:简洁明了地说明希望完成的任务。 个性:回应的风格、个性或者方式。 实验:提供多个回答的示例。 此外,在法律领域,对于律师写好 Prompt 有以下建议框架及格式: 第一种:CRISPE Capacity and Role(能力与角色):比如您希望它的角色是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 Insight(洞察):提供背景信息和上下文,比如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 Statement(陈述):直接明确期望 AI 完成的任务,比如要求 AI 总结此案件中双方的诉求、检索法条、预测可能的判决结果。 Personality(个性):您希望 AI 以什么风格或方式回答您。 Experiment(举例)
2025-03-25
java程序员,怎么吧AI结合到公司的业务上去,K12教育公司
对于 Java 程序员将 AI 结合到 K12 教育公司的业务中,以下是一些可能的方向和建议: 首先,可以考虑利用自然语言处理技术来改善学生与学习平台的交互体验。例如,开发智能客服,能够自动回答学生和家长常见的问题,提高服务效率。 其次,通过机器学习算法对学生的学习数据进行分析,从而实现个性化的学习推荐。比如根据学生的学习进度、成绩、学习习惯等因素,为他们推荐适合的课程、练习和学习资源。 另外,运用图像识别技术来辅助教学材料的制作和评估。例如,自动识别和批改学生的手写作业、试卷等。 还可以开发智能辅导系统,为学生提供实时的学习指导和答疑服务。 最后,利用语音识别和合成技术,打造有声读物、语音教学等功能,丰富教学形式。 但在将 AI 引入业务的过程中,需要注意数据的安全性和合法性,以及确保技术的可靠性和稳定性。同时,要充分考虑教育的特点和学生的需求,以实现有效的融合和应用。
2025-02-23
12个精选prompt框架
以下是 12 个精选的 prompt 框架: 1. ICIO 框架: 指令:执行的具体任务。 背景信息:提供执行任务的背景信息、上下文内容,让大模型更好地回答。 输入信息:大模型需要用到的一些信息。 输出信息:明确输出的具体信息的要求,比如字数、风格、格式。 2. BROKE 框架:通过 GPT 的设计提示,来提升整体反馈的效率。 背景:提供足够背景信息,让大模型可以理解问题的上下文。 角色设定:特定的角色,让 GPT 根据特定的角色能力的特点来形成响应。 目标:明确任务的目标,让大模型知道您想让它做什么。 结果定义:明确可以衡量的结果,让大模型清楚自己做的情况。 调整:根据具体的情况,来调整具体的结果。 3. CRISPIE 框架: 能力和角色:您期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文。 声明:简洁明了地说明希望完成的任务。 个性:回应的风格、个性或者方式。 实验:提供多个回答的示例。 4. 课件中的 Prompt 之术“三板斧”: 分配角色。 给出示例(fewshots)。 思维链(ChainofThought)。
2025-02-17
如果让你来给小学生设计一门人工智能视频课,12集,你会怎么设计
对于为小学生设计一门 12 集的人工智能视频课,以下是我的设计思路: 第一集:《走进神奇的 AI 世界》 介绍什么是人工智能,通过有趣的例子展示 AI 在日常生活中的应用,激发学生的兴趣。 第二集:《AI 的历史之旅》 讲述人工智能的发展历程,从早期的概念到现代的突破。 第三集:《AI 如何理解我们》 讲解 AI 是如何处理和理解人类输入的信息,如语言、图像等。 第四集:《智能机器人小伙伴》 介绍机器人如何通过 AI 技术实现各种功能和动作。 第五集:《AI 在游戏中的魔法》 展示 AI 在游戏中的应用,如游戏角色的智能行为。 第六集:《AI 与医疗保健》 讲述 AI 在医疗领域的作用,如疾病诊断、医疗影像分析等。 第七集:《AI 与交通出行》 介绍 AI 如何改善交通状况,如智能交通系统。 第八集:《AI 与教育的碰撞》 探讨 AI 在教育中的应用,如个性化学习、智能辅导。 第九集:《AI 绘画的奇妙世界》 让学生了解 AI 绘画的原理和创作过程。 第十集:《AI 音乐的旋律》 介绍 AI 在音乐创作和演奏方面的应用。 第十一集:《AI 的未来展望》 一起畅想未来 AI 可能带来的更多变化和创新。 第十二集:《我和 AI 的故事》 鼓励学生分享自己对 AI 的理解和想象,总结课程内容。 在每一集的设计中,都会采用生动有趣的动画、简单易懂的案例和互动环节,让小学生能够轻松理解和参与。
2025-02-14
在2025年2月12日这个时间点,我有哪些方式可以快速,稳定的使用 deepseek r1
在 2025 年 2 月 12 日,您可以通过以下方式快速、稳定地使用 DeepSeek R1: PPIO 派欧云(https://ppinfra.com/modelapi/product/llmapi?utm_medium=article&utm_source=WayToAGI):提供满血版全版本的 DeepSeekR1,输入价格为¥4/百万 tokens,输出价格为¥16/百万 tokens。有开发者福利,新注册立得 500 万 tokens(关注 PPIO 公众号回“deepseek”再领 1 亿),初创企业认证有 10 万算力补贴。产品服务特点为服务稳定性 99.9%,保持 0 故障,与 DeepSeek 官方同价,客户支持通道 10 分钟响应。 百度智能云:DeepSeekR1 限时免费,配额 1000RPM/10000TPM,无调用 tokens 上限。本模型将于 2025 年 2 月 19 日 00:00 起正式商用计费,输入价格 0.002 元/千 tokens,输出价格 0.008 元/千 tokens,有在线体验。 硅基流动:DeepSeekR1 输入价格为¥4/M Tokens,输出价格为¥16/M Tokens,有在线体验。2025 年 2 月 6 日起,未实名用户每日最多请求此模型 100 次。 此外,在 2 月 12 日,还有以下相关内容: 《》,来自社区伙伴 Hua 的投稿,手把手指导您在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 《》Anthropic 正式发布 Anthropic AI Economic Index,聚焦 AI 对经济的长期影响。该指数直观展现 AI 如何融入现代经济的各类实际任务,并从职业(occupation)和具体工作任务(task)两个维度,量化 AI 对劳动力市场的影响。 《》DeepSeekR1 的火爆现象背后,企业可以获得显著提升。其强化学习和联网搜索能力,改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。同时,DeepSeek 的开源策略打破了技术垄断,让国内大模型能力迅速提升。
2025-02-12
OpenAI Operator, Anthropic Claude Coder
以下是关于 OpenAI Operator 和 Anthropic Claude Coder 的相关信息: 2025 年 Agent 领域的发展预测: 从对话助手到行动型智能体是 2025 年 Agent 技术的主流发展方向之一。计算机操作能力取得突破,传统大模型更多充当聊天助手,而 2025 年的突破在于让 Agent 直接“动手”操作电脑和网络环境。 Anthropic 在 2024 年底发布的 Claude 3.5 Sonnet 首次引入“Computer Use”能力,让 AI 像人一样通过视觉感知屏幕并操作鼠标键盘,实现了 AI 自主使用电脑的雏形。 OpenAI 在同期推出了代号“Operator”的 Agent 及其核心模型“计算机使用智能体”(CUA),使 GPT4 获得直接与图形界面交互的能力。CUA 通过强化学习将 GPT4 的视觉能力与高级推理相结合,训练 AI 可像人一样点击按钮、填表、滚动页面等。在 OpenAI 的测试中,CUA 在浏览器任务基准 WebArena 和 WebVoyager 上分别达到 38.1%和 87%的成功率,后者已接近人类水平。 其他相关信息: 宝玉日报 1 月 25 日: Deepseek 提示词框架包含四大模块:任务目的(Purpose)、计划规则(Planning Rules)、格式规则(Format Rules)、输出说明(Output)。 Anthropic 的 Claude 可通过屏幕截图获取计算机视觉信息,计算光标移动的像素坐标,并执行点击、滚动等操作。 OpenAI Operator 利用虚拟主机和 Chrome 浏览器,通过 CUA 实现网页实时操作,支持复杂任务导航。 主要的大语言模型: OpenAI 系统包括 3.5 和 4 等,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型在春季首次发布,功能更强大。新的变种使用插件连接到互联网和其他应用程序。Code Interpreter 是一个非常强大的 ChatGPT 版本,可以运行 Python 程序。未为 OpenAI 付费只能使用 3.5。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,连接到互联网。 谷歌一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是 PaLM 2 模型。 Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-04-01
openai官方文档
以下是关于 OpenAI 官方文档的相关信息: 对于刚入门学习提示词的朋友,建议先有一个大模型帐号并熟悉与之对话的方式。推荐的国产平替有 。 学习 prompt 必须看 OpenAI 的官方文档,相关链接有: 。 在 OpenAI 官方的说明文档(Documentation)中,为用户提供了若干项策略以帮助更好地使用 ChatGPT。例如策略一:编写清晰的说明,即在询问中包含详细信息以获得更多相关答复。因为大模型无法在有限信息中“猜测”用户意图,所以提问时不要惜字如金,多说一些内容、多提供一些信息能有效提高回复的质量和丰富性。文中还列举了多个例子进行说明。
2025-03-29
OpenAI o1、Claude Sonnet 3.7、Gemini 2.0 pro 哪个 AI 搜索能力更强?
OpenAI o1、Claude Sonnet 3.7 和 Gemini 2.0 pro 在不同方面具有各自的优势,难以简单地比较哪个的搜索能力更强。 OpenAI o1 推理能力强,适合作为架构师或算法顾问。 Claude Sonnet 3.7 擅长长上下文任务,在快速生成代码与网页设计方面表现出色。 Gemini 2.0 pro 长上下文支持较好(2M Tokens),适合代码反编译与混淆代码分析。 具体的搜索能力表现还会受到应用场景和具体任务的影响。
2025-03-21
openai deep research使用技巧
OpenAI 的 Deep Research 功能能够整合多源信息,进行复杂的信息查询与分析,并生成专业水准的报告,同时详细展示思考和搜索过程。目前,该功能仅支持文本输出,未来还将增加嵌入式图片、数据可视化等功能。使用入口为在 ChatGPT 输入框中选择「Deep Research」模式,输入问题后即可开始体验。 在 OpenAI 推出「Deep Research」功能一天后,Hugging Face 的工程师迅速联合推出了免费开源的版本 Open Deep Research,能自主浏览网页、滚动页面、处理文件,以及基于数据进行计算。使用入口为前往 Demo 网站(opendeepresearch.vercel.app)体验。 Deep Research 让 AI 自动完成多步骤研究任务,快速分析海量信息并生成专业报告,具备自动化信息汇总、文献引用与多领域适用性,适合科研、工程、金融等行业。目前向 Pro 用户开放,未来将扩展至 Plus 和 Team 用户,并提供更强大的功能。 该智能体基于优化版 OpenAI o3 模型,结合网络浏览和 Python 分析能力,实现高效研究,适用于科学、政策、工程等高强度知识工作,也能帮助购物者做复杂决策。Pro 用户已可使用,后续将逐步向 Plus、Team 和企业用户开放。
2025-03-08
openAI的deep research有哪些缺陷
OpenAI 的 Deep Research 存在以下一些缺陷: 1. 具有滞后性,在某些信息上无法做到及时更新。 2. 存在信息混乱的问题,无法完全替代人类的深度思考。
2025-03-03
Monica和Openai的记忆功能是如何让大模型产生记忆的?是什么原理?
大模型的记忆功能实现方式较为复杂,不同的模型可能有所不同。 OpenAI 的模型中,大模型 LLM 扮演了“大脑”的角色,其记忆功能可能通过“Agent = LLM + 规划 + 记忆 + 工具使用”的基础架构来实现。但需要注意的是,对于 ChatGPT 这类模型,实际上其本质上并没有直接的记忆功能。它能理解之前的交流内容,是因为每次将之前的对话内容作为新的输入重新提供给模型。这种记忆功能并非由大型模型直接实现,而是通过在别处进行存储来达成。 如果对话内容过长,可能会影响模型的整体性能。解决这个问题的一个简单方法是启动另一个对话框。对于之前的数据,通常只能进行总结。
2025-03-01
grok3 发布会亮点内容
Grok 3 发布会的亮点内容包括: 1. 包含两个模型版本:Grok 3 和 Grok 3mini。 2. 在 AIME 和 GPQA 在内的基准测试中显著优于其他模型,在数学推理、代码处理、科学问题方面表现优秀。 3. 具备推理能力,在提供更多测试计算时间的情况下,优于 o1 和 R1。 4. 今天向所有 Premium+订阅者推出(IOS、网页版都有),完整版在网页版,APP 上的 Grok 3 有一定削弱。 5. 新增“Deep Search”能力,能深入了解用户目的,访问并交叉验证多个信息源,确保研究内容准确,并公开执行搜索步骤。 6. 可以调用 Big Brain 功能加强计算来解决问题。 7. 现场演示中,Grok 3 可以生成游戏设计方案。 8. Grok 3 语音模式在大约一周内推出。 9. Grok 3 API 几周后推出。 10. Grok 2 将在 Grok 3 正式可用后开源,xAI 计划也会开源 Grok 3。
2025-02-19
openai发布会内容
以下是关于 OpenAI 发布会的相关内容: 1. 12 月 20 日,OpenAI 发布 AI 大模型风险防范框架文件,OpenAI 董事会有权决定发布新 AI 模型,框架文件提出防范 AI 大模型灾难性风险的路线图,董事会可推翻领导团队关于 AI 模型发布的决策。相关链接:https://openai.com/safety/preparedness 2. 12 月 12 日,OpenAI 连续 12 天 AI 发布会的第五天完整视频(中英文双语字幕),亮点功能包括苹果设备深度集成 ChatGPT,可通过 Siri 实现文档总结、任务分配、节日创意等操作,多平台无缝衔接,涵盖多种应用场景,实用场景包括圣诞派对策划、PDF 总结、歌单生成、视觉智能评选毛衣创意等功能演示,体现全新交互体验。相关链接: 3. OpenAI 将在 11 月 6 日举办首次开发者大会,会上将发布重要更新,目标是让开发者能够更快捷和廉价地开发基于大模型的应用。此次更新最让人期待的部分是将推出 Stateful API,理论上可将大模型应用的开销削减为原来的二十分之一。相关链接:https://mp.weixin.qq.com/s/NPqAeSl3NQ0_wbHzsJSw
2024-12-19
OpenAI前六场发布会的内容提炼
以下是 OpenAI 前六场发布会的部分内容提炼: OpenAI 第六天发布会:ChatGPT 的高级语音模式获得公开访问权限,能通过自然语音与用户对话并理解屏幕内容,降低使用门槛,展示多模态能力和个性化发展潜力。 相关报告:甲子光年发布的《2024 人工智能产业 30 条判断——万千流变,一如既往》涵盖 AI 技术历史发展、当前趋势和未来预测,提到 Transformer 模型和 GPT 系列发展及在多行业应用,探讨了 AI 芯片进步、在科学研究中的角色和对社会的广泛影响,还预测了 AI 产业增长。中信建投证券的海外 AI 应用行业专题《旧金山草根调研与海外 AI 应用进展》长达 100 多页,聚焦旧金山草根调研及海外 AI 应用进展,显示旧金山及硅谷地区 AI 企业众多,AI 应用在 To B 场景如广告、助手、数据分析等领域受关注,长期看好,尤其是 C 端应用潜力,列举了多家公司及其业务领域、功能进展,并提供相关上市公司数据。 OpenAI 首届开发者大会:短短 45 分钟发布会,Sam Altman 表示团队对开发者关注的问题做了六大升级,包括更长的上下文长度、更强的控制、模型的知识升级、多模态、模型微调定制和更高的速率限制,前四条主要关于新模型性能提升,后两点针对企业开发者痛点,同时宣布 API 价格下调。
2024-12-17
OPenAI最近的产品发布会
OpenAI 近期举行了多次产品发布会: 去年 11 月晚些时候发布了基于 GPT3.5 最新版本的消费级产品 ChatGPT。公司内部对是否发布这样强大的工具存在争论,但 Altman 表示支持,认为这是让公众适应 AI 改变日常生活现实的战略一部分。ChatGPT 功能强大,能在 SAT 考试中获大学水平分数、写作文、总结书籍等,还能按各种要求改写。 近期举行了 12 场发布会,推出多个新产品,包括推理模型 o1、文字转视频工具 Sora 等。o1 正式版在复杂推理和数学能力上显著提升,推出的强化微调技术使模型更具专业性。 在 5 月份的 GPT4o 模型发布会上,邀请了可汗学院的创始人 Salman Khan 和他儿子一起使用 GPT4o 辅导孩子在可汗学院上做数学题,这是 OpenAI 第一次将多模态模型能力在教育场景上落地应用的尝试。
2024-12-17
openai发布会要点
以下是 OpenAI 发布会的要点: 1. 技术进步展示:从 GPT 4o 到 11 的技术跳跃,在数学竞赛 GPQA 中有出色表现。 2. 原始智能与编码性能:强调原始智能在编码性能方面的重要性,这是用户使用模型的主要领域。 3. 多模态处理能力:展示了模型处理困难问题和多模态输入的能力。 4. 新产品发布:推出聊天 GBT 专业版,提供无限制模型访问和高级语音模式;介绍 O one 亲模式,称其为世界上最智能的机型之一。 5. 性能提升:通过比较专业模式和普通模式,展示了在可靠性和性能上的提升。 6. 用户反馈与改进:根据用户反馈改进 O one 预览版,使其更快更智能,增加多模态输入功能,允许通过图像和文字进行联合推理。 7. Chat BT Pro 和 O one Pro 模式:Chat BT Pro 允许无限制访问最佳模型,如 O14,并提供 O one Pro 模式处理最困难的问题。 8. 错误率和速度提升:新模型的错误率比 O one 预览版少 34%,思考速度提高 50%。 9. 多模态推理演示:通过太空数据中心的案例展示多模态推理。 10. Chat BT Pro 的扩展功能:正在为其添加网页浏览、文件上传等更多功能。 此外,在 12 月 12 日和 12 月 15 日的宝玉日报中,提到 OpenAI 连续 12 天 AI 发布会的第五天亮点功能包括苹果设备深度集成 ChatGPT,可通过 Siri 实现文档总结、任务分配、节日创意等操作;多平台无缝衔接,支持 iPhone、iPad 和 Mac,涵盖多种应用场景;实用场景包括圣诞派对策划、PDF 总结、歌单生成、视觉智能评选毛衣创意等功能演示,体现全新交互体验。相关链接:https://x.com/dotey/status/1866974269051113543
2024-12-17
open发布会要点
以下是 OpenAI 发布会的要点: 1. 技术进步展示:从 GPT 4o 到 11 的技术跳跃,在数学竞赛 GPQA 中有出色表现。 2. 原始智能与编码性能:强调原始智能在编码性能方面的重要性,这是用户使用模型的主要领域。 3. 多模态处理能力:展示了模型处理困难问题和多模态输入的能力。 4. 新产品发布:推出聊天 GBT 专业版,提供无限制模型访问和高级语音模式;介绍 O one 亲模式,是目前世界上最智能的机型之一。 5. 性能提升:通过比较专业模式和普通模式,展示了在可靠性和性能上的提升。 6. 用户反馈与改进:根据用户反馈改进 O one 预览版,使其更快更智能,增加多模态输入功能,允许通过图像和文字进行联合推理。 7. Chat BT Pro 和 O one Pro 模式:Chat BT Pro 允许无限制访问最佳模型,如 O14,并提供 O one Pro 模式处理最困难的问题。 8. 错误率和速度提升:新模型的错误率比 O one 预览版少 34%,思考速度提高 50%。 9. 多模态推理演示:通过太空数据中心的案例展示模型的多模态推理能力。 10. Chat BT Pro 的扩展功能:正在为其添加网页浏览、文件上传等功能。 新模型 9.12 发布的要点: 1. 发布两个模型:o1 mini,o1 preview。Plus 全量可用 o1 mini 一周 50 条,o1 preview 一周 30 条。 2. 更聪明的思考方式:像人一样花更多时间思考问题,尝试不同策略,能意识到自己的错误。 3. 在复杂任务上表现出色:在物理、化学、生物、数学和编程等领域的挑战性任务上表现得像博士生,在 IMO 和 Codeforces 竞赛中取得高分。 4. 暂时缺少一些功能:目前没有 ChatGPT 那样的网络浏览和文件上传功能,但在复杂推理任务上非常强大。 O1 Pro 版本的要点: 1. 面向专业用户,强大精确。 2. 独有功能包括深度推理能力,可处理复杂数学和科学问题,支持多步推理和专业计算,思考时间约 1 3 分钟;在科学、数学、编程等领域表现出色,提供专业准确解答;支持长文本处理,轻松应对长文档处理与内容生成;提供更多微调选项,用户可根据自身需求进行个性化定制。 3. 对比优势:错误率大幅降低,推理能力显著增强,基准测试表现惊人。 ChatGPT Pro 订阅计划的要点: 1. 费用为每月 200 美元。 2. 目标用户是解决复杂问题的研究人员、工程师和专业人士。 3. 核心功能是使用 o1 Pro 模式,专为数学竞赛、科学研究、代码开发等高要求场景优化,提供更高的准确性和可靠性,适用于严格的技术基准测试任务。 4. 特别支持:OpenAI 为美国医学研究人员提供资助,重点支持罕见病基因发现、痴呆症研究、癌症免疫治疗。 发布会吐槽:直播仅用 30 分钟讲完,像是把一个大更新硬切成了 12 段。总结:o1 基础版主打日常体验,速度快且功能全面;o1 Pro 版深度推理与专业能力爆表,适合更复杂的任务。ChatGPT Pro 订阅计划开启了高性能 AI 工具的新篇章,推动科研与工程领域的新突破!
2024-12-17
毕业论文的ai指令总结
以下是关于毕业论文的 AI 指令的总结: 1. 可以指定 AI 模仿某位资深人士的风格,如律师的逻辑严谨和言简意赅。 2. 要求 AI 为您提供多个例子,例如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 3. 采用 PEMSSC 方法,包括个性化的风格(Personality)、给参考或一定的逻辑结构(Example Inquiry)、从多个角度思考(Multiple Angles)、总结概括(Summarize)、使用区分符号(Separator)、明确能力或者角色(Capacity and Role)。 4. 对于大多数实际应用,建议专注于经过调整的指令语言模型,使用时要给清晰的指令,如指定文本的语气、要求集中讨论的内容,甚至可以提前指定阅读的文本。 5. 可以直接要求 LLM 帮写论文,如提供个人背景信息和指令让其写大学申请论文,但要注意这种使用方式的道德问题。
2025-04-14
音频总结的AI有哪些
以下是一些关于音频总结的 AI 相关内容: 在智能纪要方面,AI 音乐创作通过输入更高级词汇与 AI 音乐对话能产生更好效果,有相关版块、挑战、分享会和教程,可加入 AI 音乐社区。数字人语音合成介绍了声音克隆技术,常用的是 JPT service。 总结类 AI 工具方面,如 BibiGPT·AI 音视频内容一键总结(https://b.jimmylv.cn/)、15 个值得一试的 YouTube 视频摘要 AI 工具(https://nealschaffer.com/youtubevideosummarizerai/)、summarize.tech:AIpowered video summaries(https://www.summarize.tech/)。 在生成式 AI 季度数据报告中,会议总结赛道可能因远程工作和在线会议普及而需求增加,Otter AI 作为领先产品保持稳定增长。其中 2023 年 4 月到 2024 年 3 月,赛道月访问总量有变化,如 2023 年 4 月约 1314.6 万,2024 年 3 月增至 2146.3 万。同时还有相关的榜单数据,如 23 年 4 月访问量 Top10 等。
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
我现在想做一个总结我每日复盘的智能体
以下是关于创建总结每日复盘智能体的相关信息: 智普工作流功能及创建流程: 新用户资源包:新用户有 1 元及 5 元的资源包可供购买,能满足使用需求。 工作流功能:具备文章、文件、网页总结,生成图片、视频和文字版日报等功能,通过意图识别跳转节点,使用多个 agent。 工作流创建:在控制台的自动体中心,右键创建智能体,可选择对话型或文本型,对话型多用于多 agent 协作等场景,创建后在空旷画布的左下角添加节点,节点包括 agent、LM、工具、代码、数据提取、分支判断和问答等,agent 通过跳入跳出条件与其他节点交互,LM 通过工作流连线执行功能。 文档获取:文档可在 vtoagi.com 首页的 banner 获取,飞书群也可获取。 版本选择:接入微信时,有云服务器和本地电脑两种版本,可按需选择。 关于姿谱清流工作流及模型配置的讨论: 工作流节点与 agent:工作流中节点和 agent 的连接方式,agent 具有意图识别和跳出条件,可实现任务跳转,所有 agent 平级可互相跳转。 文本存储问题:姿谱清流本身无存储功能,需依靠其他笔记工具存储执行完的文本。 模型配置与调试:介绍了姿谱清流中角色扮演模型的配置方法,包括角色名称、背景、人格等设置,以及单节点调试功能和用户配置。 意图识别与冲突:意图配置冲突可能导致识别错误和乱跳,识别准确率相对较准。 多智能体的记忆:多智能体之间存在记忆,后续会讲到相关参数的使用。 在 cos 主页有新手教程文档,可据此构建智能体。工作流偏向节点调用,可通过 prompt 构建提示词并优化。还能调用多种插件,可添加图像流、触发器和知识库,知识库可上传多种格式内容及在线链接以沉淀知识。
2025-04-10
我想寻找一个AI模型,能快速读懂视频,并总结成为知识架构的应用或网站
以下为您推荐能快速读懂视频并总结成为知识架构的应用或网站: 百炼大模型平台:其影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,可生成爆款文案,还能根据偏好调试提示词。2025 年 1 月 9 号更新的模型可通过 API 调用纹身 AI 等,Windows 用户可在左下角开始运行输入命令提示符进行本地调用,但生成过程较缓慢。 应用场景:包括商品信息图片生成淘宝上架规格参数、智能手表文案生成、社交媒体内容生成、合同提取、拍照搜题、图片转换、模特换装等。 提供 AI 硬件底层能力,AI 拍立得相机拍照可快速成诗并打印,其对接多模态能力可通过智能体应用或工作流形式的 API 调用。 开源使用:有开源地址,可下载到本地,配置阿里云百炼平台的 API key 及 appid 实现场景,运行项目需特定 Python 包和依赖,可新建应用获取 appid,拍照时需设置 API key。 此外,关于 AI 技术原理与框架的相关知识: 生成式 AI 生成的内容称为 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,电脑通过找规律进行学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不属于大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-04-09
罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?按照时间线将以上内容梳理出来
以下是按照您的需求梳理的内容: 时间线 早期: 从图灵测试、早期的图灵机器人和 ELISA 开始,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统。 近年来: OpenAI 发布 ChatGPT 模型,引发用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。Scaling Law 泛化,推理能力成为关键,倒逼计算和数据变革。AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 在应用方面,AI 在文科白领的个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作;对于工科白领,特别是程序员,能简化代码检索和调整;在蓝领领域,自动驾驶取得显著进展。但在复杂任务方面仍有改进空间。 第一轮洗牌结束,聚焦 20 赛道 5 大场景,多领域竞速中运营大于技术,AI 助手成为竞争重点。AI+X 赋能类产品发展迅速,原生 AI 爆款难求。多模态上马,Agent 席卷一切,高度个性化呼之欲出。 人工智能发展经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要。 未来: 李沐预测技术发展可能催生出革命性的应用形态,但 AI 离真正变革世界还有一段距离。 预计 AI 在蓝领工作的初步应用至少需要 5 年时间。 AI 技术创新点: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 技术的发展趋势: 模型架构不断优化和融合。 更加注重推理能力的提升。 探索 AGI 领域,实现虚拟和现实的统一。 应用格局不断洗牌,聚焦特定赛道和场景。 多模态和 Agent 技术的广泛应用。 对用户交互体验的改变: 用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 AI 应用为用户提供辅助,在多个领域帮助完成任务。
2025-03-31