Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

端到端语音技术现在进展到什么程度了

Answer

端到端语音技术目前取得了显著进展。

在语音合成方面:

  • 语音合成将文本转换为可听的声音信息,是人机交互的重要接口,一般包括 TTS、歌唱合成等领域。
  • 当代工业界主流语音合成系统包括文本前端和声学后端两个部分。文本前端将输入文本转换为层次化的语音学表征,声学后端基于此生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。
  • 端到端声学后端一般包括声学模型和声码器两部分,也出现了直接从音素映射为波形的完全端到端语音合成系统。

在全模态智能体方面:

  • OpenAI 发布的 GPT-4o 是新模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,对音频输入的平均反应时间为 300 毫秒,与人类对话的反应时间相似。
  • 直接拿音频数据来训练的好处是模型能从数据中感悟到人类表达的情绪、语调、风格等,能听到几乎真实的人类的声音。
  • OpenAI 未公开 GPT-4o 的技术细节,唯一线索来自内部模型炼丹师的一篇博客,项目名是 AudioLM,目标是用端到端的方式扩大语音模型的能力。
Content generated by AI large model, please carefully verify (powered by aily)

References

TTS超全教程

语音合成(Speech Synthesis)将文本转换为可听的声音信息,它赋予了像人一样说话的能力,是人机交互的重要接口。一般来说,语音合成的概念比文语转换(Text-to-Speech,TTS)的涵盖范围更广,语音合成包括TTS、歌唱合成等领域,但大多数情况下可以混用。[awesome-tts-samples](https://github.com/seungwonpark/awesome-tts-samples)提供了一些端到端语音合成模型的样例,可以简单感受下目前语音合成的发展。人类可以通过一整套发音器官合成语音,具体来说,肺相当于动力源,喉相当于调制器,声道相当于滤波器,口唇相当于扩音器。研究人员提出了以源-滤波器(source-filter)模型为代表的多种模型建模该过程,语音中存在清音和浊音,分别由声带周期性振动对应的周期声源和声带不振动时紊乱气流对应的非周期声源产生。当代工业界主流语音合成系统包括文本前端和声学后端两个部分。文本前端将输入文本转换为层次化的语音学表征,主要包括文本规范化、韵律分析和文本转音素等模块。声学后端基于文本前端给出的层次化语言学表征(linguistics feature)来生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。端到端声学后端一般包括声学模型和声码器两部分,同时也出现了直接从音素映射为波形的完全端到端语音合成系统。声学模型负责将语言学特征转换为中间声学特征,比如梅尔频谱,直接决定合成语音的韵律;声码器将中间声学特征转换为语音波形,直接决定合成语音的音质。

TTS超全教程

和统计参数语音合成系统类似,深度学习语音合成系统也可大致分为两个部分:文本前端和声学后端。文本前端的主要作用是文本预处理,如:为文本添加韵律信息,并将文本词面转化为语言学特征序列(Linguistic Feature Sequence);声学后端又可以分为声学特征生成网络和声码器,其中声学特征生成网络根据文本前端输出的信息产生声学特征,如:将语言学特征序列映射到梅尔频谱或线性谱;声码器利用频谱等声学特征,生成语音样本点并重建时域波形,如:将梅尔频谱恢复为对应的语音。近年来,也出现了完全端到端的语音合成系统,将声学特征生成网络和声码器和合并起来,声学后端成为一个整体,直接将语言学特征序列,甚至文本词面端到端转换为语音波形。

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

每一次平台型技术的出现,都会催生出新的人机交互方式,个人电脑时代的鼠标与键盘,移动时代的触摸屏,现在是智能时代,我们一度认为ChatGPT的LUI(自然语言对话式界面)就是这个时代交互的终点,但事实并非如此,知名科幻电影HER中,那种人类与AI全感知无障碍的对话形式,才是我们想要的。“通过语音、文本和视觉进行推理非常重要,因为我们正在研究与机器交互的未来”,Muri Murati在今年五月十三日那场不到半小时的超快发布会上这样告诉大家。那天OpenAI发布了最新的模型GPT-4o,并且用了个很前卫的新概念,全模态模型-Omnimoda Model。GPT-4o是OpenAI之前所有技术的集大成者,新模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,而不是用大家常用的工程手段,先各种数据先转换成文本后,交给LLM处理,然后再把输出的文本转换成对应的媒体形式。这样,GPT-4o对音频输入的平均反应时间为300毫秒,与人类对话的反应时间相似;而且直接拿音频数据来训练的好处就是模型能从数据中感悟到人类表达的情绪、语调、风格等等,你能听到几乎真实的人类的声音,在一段演示中感觉连训练时的环境声音都给还原出来了。OpenAI并没有公开GPT-4o的任何技术细节,唯一的线索就是来自他们内部模型炼丹师的一篇博客,项目名是AudioLM,2023年中启动,目标是用端到端的方式扩大语音模型的能力。

Others are asking
端到端 模型的应用场景
端到端模型的应用场景包括以下方面: 硬件领域,如机器人、耳机等。 处理垃圾情绪。 音视频应用,效果良好。 手机侧,作为原生 AI OS 的未来重点方向,有望成为新的交互入口,除生成内容外,还能调用手机上的各类应用程序,方便用户完成各类操作。 自动驾驶,输入为视觉,输出为油门、刹车、方向盘等。 物体分拣,输入包括视觉、指令、数值传感器,输出为抓取目标物体并放置到目标位置。
2025-01-02
如果要创建一个和你一样的ai,你可以把技术栈给我罗列出来吗,从数据库到后端到前端分别用到了哪些技术
如果要创建一个类似我的 AI ,以下是从数据库到后端到前端可能用到的技术栈: 前端:推荐使用 React.js 或 Vue.js 框架,它们适合构建动态的用户界面,且有丰富的组件库支持多媒体内容展示。 后端:采用 Node.js 加上 Express.js ,能使用 JavaScript 同时开发前端和后端,简化开发过程,Node.js 的非阻塞 IO 特性适合处理实时通讯需求。 数据库:选择 MongoDB ,对于可能需要存储的文档形式数据(如离谱生物档案和相关事件),它在存储此类灵活数据方面表现良好。 语音处理:可以考虑使用 Google Cloud SpeechtoText 和 TexttoSpeech API 来实现语音与文本的相互转换,以支持语音对话。
2024-08-25
什么是端到端,在智驾中体现在什么地方
端到端是指在处理问题或完成任务时,直接将输入数据映射到输出结果,中间不进行明显的分段或模块划分,实现从起点到终点的一体化处理。 在智驾中,端到端的体现主要有以下方面: 对于端到端训练的模型,类似 RFM1 的路径,直接将多模态输入(如传感器数据、图像等)映射到输出动作(如车辆的转向、加速、减速等)。 在具身智能中,存在大脑与小脑统一在一个大模型之中的端到端具身大模型解决方案。但在实际应用中,对于诸如力矩控制、电流控制等具体环节,对于做到哪一步才算端到端存在争议。 总之,端到端在智驾中的应用仍在不断探索和发展中。
2024-08-13
什么端到端
端到端(Endtoend)在不同领域有不同的含义: 在自动驾驶领域,基于深度强化学习的端到端控制架构是新兴研究热点,能克服传统方式依赖先验环境建模的问题,直接实现从感知到控制功能的映射。 在大模型领域,一个 AI 模型只要输入原始数据就可以输出最终结果。例如 Google 的 RTX 系列专注于机器人 HighLevel 决策问题,其中就使用 Transformer Model 进行端到端训练。
2024-08-13
端到端是什么意思?
端到端指的是输入端到输出端的整个流程,即从原始数据输入到最终结果输出的全过程。在 AI 领域中,端到端模型是指一种能够直接从输入数据到输出结果的模型,无需中间步骤的转换或预处理。
2024-04-29
coze 语音克隆
以下是关于语音克隆的相关信息: 有一款适合小白用户的开源数字人工具,具有以下特点和功能: 特点:一键安装包,无需配置环境,简单易用。 功能:生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。 系统兼容:支持 Windows、Linux、macOS。 模型支持:MuseTalk(文本到语音)、CosyVoice(语音克隆)。 使用步骤:下载 8G + 3G 语音模型包,启动模型即可。 GitHub 链接: 官网链接: 另外,CosyVoice 声音克隆仅需几秒音频样本,无需额外训练数据,可控制情绪情感、语速、音高。 详细内容:https://xiaohu.ai/p/10954 项目地址:https://funaudiollm.github.io 在线演示:https://modelscope.cn/studios/iic/CosyVoice300M
2025-04-12
语音克隆
GPTSoVITS 是一个用于声音克隆和文本到语音转换的开源 Python RAG 框架,具有以下特点和使用步骤: 特点: 1. 零样本 TTS:输入 5 秒的声音样本即可体验即时的文本到语音转换。 2. 少量样本训练:只需 1 分钟的训练数据即可微调模型,提高声音相似度和真实感,模仿出来的声音更接近原声且自然。 3. 跨语言支持:支持与训练数据集不同语言的推理,目前支持英语、日语和中文。 4. 易于使用的界面:集成了声音伴奏分离、自动训练集分割、中文语音识别和文本标签等工具,帮助初学者更容易地创建训练数据集和 GPT/SoVITS 模型。 5. 适用于不同操作系统:项目可以在不同的操作系统上安装和运行,包括 Windows。 6. 提供预训练模型:项目提供了一些已经训练好的模型,可直接下载使用。 使用步骤: 1. 前置数据获取处理: 选择音频,开启切割。 有噪音时,进行降噪处理。 降噪处理完成,开启离线 ASR。 2. GPTSowitsTTS: 训练集格式化:开启一键三连,耐心等待。 微调训练:开启 SoVITS 训练和 GPT 训练。 推理:开始推理 刷新模型 选择微调后的模型 yoyo。 3. 声音复刻:开启声音复刻之旅,可实现跨多语种语言的声音。 相关资源: GitHub:https://github.com/RVCBoss/GPTSoVITS 视频教程:https://bilibili.com/video/BV12g4y1m7Uw/ 注册 colab 并启动准备:点击进入按照步骤注册即可 https://colab.research.google.com/scrollTo=Wf5KrEb6vrkR&uniqifier=2 ,新建笔记本,运行脚本启动 GPTSo VITS,整个过程比较漫长,需要耐心等待,可以整个脚本一起运行,也可以一段一段运行;运行过程包括克隆项目代码库、进入项目目录、安装 Python 依赖包、安装系统依赖、下载 NLTK 资源、启动 Web UI,运行成功后出现 public URL。 实践样本: AIyoyo 普通话 满江红 AIyoyo 粤语版 满江红
2025-04-12
文字转语音
以下是关于文字转语音的相关内容: DubbingX2.0.3: 界面与国内版相同,使用了沉浸式翻译功能,可能看起来较乱。 第一个选项是文字转语音,与国内版相同,不做重复演示。 重点介绍第二项“创建您的语音克隆”: 上传语音(想克隆的声音原始文件)。 给声音命名,方便以后配音选择。 选择语言。 勾选相关选项,点击转变即可生成。 注意:原音频若有背景音乐,最好在剪影中去除,以使生成的音色模型效果更好、更纯净。 Hedra: 可以直接文字转语音,目前有 6 个语音。 也可以直接上传音频。
2025-04-11
语音转文字
以下是关于语音转文字的相关信息: 推荐使用 OpenAI 的 wishper 进行语音转文字,相关链接:https://huggingface.co/openai/whisperlargev2 。一分钟搞定 23 分钟的音频,相关链接:https://huggingface.co/spaces/sanchitgandhi/whisperjax 。此项目在 JAX 上运行,后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,快 70 多倍,是目前最快的 Whisper API 。 语音转文本(Speech to text): 介绍:语音转文本 API 提供转录和翻译两个端点,基于开源大型v2 Whisper 模型。可用于将音频转录为任何语言,将音频翻译并转录成英语。目前文件上传限制为 25MB,支持 mp3、mp4、mpeg、mpga、m4a、wav 和 webm 等输入文件类型。 快速入门: 转录:转录 API 的输入是要转录的音频文件及所需输出格式的音频文字稿,默认响应类型为包含原始文本的 JSON,可添加更多带有相关选项的form 行设置其他参数。 翻译:翻译 API 输入任何支持语言的音频文件,必要时转录成英语,目前仅支持英语翻译。 更长输入:默认 Whisper API 仅支持小于 25MB 的文件,若音频文件更长,需分成小于 25MB 的块或使用压缩后格式,可使用 PyDub 开源 Python 软件包拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。 提示:可使用提示提高 Whisper API 生成的转录质量,如改善特定单词或缩略语的识别、保留分段文件的上下文、避免标点符号的省略、保留填充词汇、处理不同书写风格等。
2025-04-08
实时翻译视频语音
以下是为您整理的相关信息: 实时翻译视频语音的工具: StreamSpeech:这是一个实时语言翻译模型,能够实现流媒体语音输入的实时翻译,输出目标语音和文本,具有同步翻译、低延迟的特点,还能展示实时语音识别结果。 给视频配音效的 AI 工具: 支持 50 多种语言的配音,音质自然流畅,提供实时配音功能,适用于直播和演讲,能将语音转录为文本,方便后期字幕制作和编辑。 Vidnoz AI:支持 23 多种语言的配音,音质高保真,支持文本转语音和语音克隆功能,提供语音参数自定义和背景音乐添加工具,提供面向个人和企业的经济实惠的定价方案。 在选择视频配音工具时,请考虑支持的语言数量、语音质量、自定义选项和价格等因素。
2025-04-07
文本转语音
以下是关于文本转语音的相关信息: 在线 TTS 工具推荐: Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 语音合成技术原理: 传统的语音合成技术一般会经过以下三个步骤: 1. 文本与韵律分析:先将文本分词,标明每个字的发音以及重音、停顿等韵律信息,然后提取文本的特征,生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量通过反变换生成声音波形,然后一次拼接得到整个文本的合成语音。在反变换过程中,可以调整参数,从而改变合成语音的音色、语调、语速等。 OpenAI 新一代音频模型: OpenAI 于 2025 年 3 月 20 日推出了全新的音频模型,包括改进的语音转文本和文本转语音功能。 语音转文本模型在单词错误率和语言识别准确性方面相较于原有的 Whisper 模型有显著提升,能更好地捕捉语音细节,减少误识别,在多语言评估基准上表现优异。 文本转语音模型具备更高的可定制性,支持个性化语音风格,目前支持人工预设的语音样式,并通过监控确保语音与合成预设一致。 测试地址:https://www.openai.fm/ 直播回放:https://www.youtube.com/watch?v=lXb0L16ISAc 说明文档:https://openai.com/index/introducingournextgenerationaudiomodels/ 内容由 AI 大模型生成,请仔细甄别。
2025-04-01
目前deepseek的进展
目前 DeepSeek 的进展如下: 持续 5 天的“开源周”已进行到第 3 天。周一开源了专为英伟达 Hopper GPU 打造的高效 MLA 解码内核 FlashMLA,已正式投产使用。周二开源了专为混合专家系统(MoE)和专家并行(EP)设计的通信库 DeepEP。周三开源了支持稠密和 MoE 模型的 FP8 GEMM(通用矩阵乘法)计算库 DeepGEMM,可为 V3/R1 的训练和推理提供强大支持。总的来说,英伟达和 DeepSeek 开源的内容都是通过对英伟达 GPU 和集群的优化,来推动 AI 模型的高效计算和部署。 华尔街分析师对 DeepSeek 的反应:展示出媲美领先 AI 产品性能的模型,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑。高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 DeepSeek 的实际使用体验:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化,表现不错;编程能力略逊于 GPT,据用户反馈。GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。
2025-04-01
上一周 ai有什么新的进展
以下是上一周 AI 的一些新进展: 应用形态的重构方面,AI Agent 取得突破,为机器人赋予自主行动能力,AI 编程工具的进展或预示人机协作模式的变革。 2 月,OpenAI 发布视频生成模型 Sora,实现高质量文本生成视频,开创 AI 视频生成新纪元。 3 月,Suno 发布 V3 版本,AI 音乐生成进入生产力可用状态。 4 月,Meta 发布高性能开源大模型 Llama3,降低了 AI 技术的准入门槛。 5 月,GPT4 发布,RayBan 与 Meta 合作的智能眼镜销量突破百万,字节上线即梦 AI。 6 月,快手发布可灵,Apple Intelligence 发布。 9 月,OpenAI 发布 o1 预览版。 10 月,Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖,约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖,Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。 12 月,OpenAI 发布 o3 系列模型。 此外,还有一些关于 AI 的讨论和话题,如把 350 万条 Midjourney 提示词放进一张可视化图里,2 套权威的 AI 术语表,天工新功能的定位靠近元宇宙,NotebookLM 与 AI 播客的关系,Bob 类似于更轻巧的能选多种大模型的桌面端应用“豆包”,Monica.im 的发展,物圆 TreLoop 的情况,对 AGI 距离的讨论,Arc 浏览器的状态,李开复关于 AI 应用爆发和 AGI 的观点,李继刚的 Prompt 玩法,OpenAI 研究副总裁离职,15 岁开发者的开源项目被收购,关于 AI 编程效率的讨论等。
2025-03-17
请推荐最新的AI相关进展新闻
以下是一些最新的 AI 相关进展新闻: 在医疗领域: ChatGPT 和 Google Bard 等技术极大加速了医疗健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等方面发挥着重要作用。例如,AI 提前三年诊断胰腺癌;两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因;AI 帮助抗衰老,筛查出高效的药物候选物;利用 AI 寻找阿尔兹海默症的治疗方法;使用神经网络分析患者体液中的生物标志物以早期诊断帕金森。 在技术应用方面: AI Agent 的突破让行业看到更多可能性,如机器人获得自主行动能力。AI 编程工具的进展预示着人机协作模式的变革。 2024 年 AI 关键进展时间线包括:2 月 OpenAI 发布视频生成模型 Sora;3 月 Suno 发布 V3 版本;4 月 Meta 发布高性能开源大模型 Llama3;5 月 GPT4 发布等。 赛博月刊显示,AI 音频公司在效果和延迟方面取得突破,3D 世界生成领域处于初级阶段但有望在明年取得巨大进步,AI 应用的更新集中在搜索、知识库、编程等领域,越来越多应用公司受到资本青睐。
2025-03-16
transformer是通往AGI的必经之路吗?什么是世界模型,当前有哪些进展
Transformer 并非通往 AGI 的必经之路。在已知的 token space 中,Transformer 符合一些条件,但在更通用的场景中不太符合。AI 本质包含一堆 scaling law,一个值得被 scale up 的架构是基础,且架构要支持不断加入更多数据。当前在数据方面,如限定问题的数据生成有进展,但通用问题还没有完全的解法。 世界模型方面,目前的研究正在以指数级别的速度增长。对于语言这种有结构、有规则的指令系统,其逻辑受指向描述变化,如早期语言模型建模中用到的 RNN、LSTM 及当前 LLM 的 Transformer 模型结构,都是对语言序列性所体现逻辑结构的适配。同时也在思考是否存在其他形式的符号化表征及相应的建模结构,以及对于非碳基生物语言的使用情况等。未来通往 AGI 的道路并非简单,需要探寻 RL 与 LLM 的本质普遍性。
2025-03-16
请帮我整理关于AI最新进展和应用的介绍内容
以下是关于 AI 最新进展和应用的介绍: 医疗领域: ChatGPT 和 Google Bard 等技术极大加速了医疗健康生物制药的研究。AI 在抗癌、抗衰老、早期疾病防治等方面发挥着重要作用。 提前三年诊断胰腺癌。 两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因。 帮助抗衰老,筛查超过 80 万种化合物发现高效药物候选物。 用于寻找阿尔兹海默症的治疗方法。 帮助早期诊断帕金森。 法律法规方面: AI 在许多领域已经取得重大进展和效率提升,如交通监控、银行账户欺诈检测、工业大规模安全关键实践等。 AI 具有巨大的潜力来改变社会和经济,可能产生与电力或互联网相当的影响。 大型语言模型等技术进步带来了变革性的发展机会。 基础通识课方面: 流式训练方式提升了训练速度和质量,基于 Transformer 模型进行流匹配优于扩大模型。 有多种 AI 生成工具,如能创作音乐的 so no 音频生成工具、创建个人 AI 智能体的豆包、生成播客的 Notebook LN。 端侧大模型能部署在手机端等设备,通过压缩解决存储和性能问题。 AI 工程平台对模型和应用有要求,如 define 平台,coach 平台有新版本模板和众多插件工具,还有工作流。 有魔搭社区等为大模型提供服务的平台。 预告了 AI 建站,需安装基础软件帮助文科生和无基础人员建站。
2025-03-15
新手如何更好使用该网站,主要了解人工智能或者AGI进展,主流软件的学习和应用
对于新手想要更好地使用该网站来了解人工智能或 AGI 进展以及主流软件的学习和应用,以下是一些相关内容: AE 软件: 基本功能:可通过图层软件抠元素加插件做特效,如利用 auto field 自动填充工具,轨道遮罩功能让图层按特定形状变化等。 与 AI 结合运用:如用 runway 生成烟花爆炸素材,结合 AE 的图层混合模式、遮罩等功能实现特效可控的画面。 其他应用:用内容识别填充功能处理视频画面,如抹掉入镜的人;从素材网站获取粒子素材为画面添加氛围感。 学习路径:可在 B 站找丰富的 AE 软件入门课程自学,也可从包图网下载工程文件学习。 学习方法:通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习 AE,还可参考模板。 与 AI 的关系:AI 出现后,AE 使用减少,有些动效可用 AI 完成。 在短剧中的应用:在火焰、文字、光线等方面有少量应用。 AI 相关技术与活动: AI 音乐创作:通过输入更高级的词汇与 AI 音乐对话能产生更好效果,有 AI 音乐的版块、挑战、分享会和教程,可通过王贝加入 AI 音乐社区。 数字人语音合成:介绍了声音克隆技术,提到了微软、阿里等的相关成果,常用的是 JPT service。 Config UI 的应用:能降低成本、提高效率,在图书出版、引流等方面有应用,岗位稀缺,社区有相关共学课程。 社区共创项目:包括东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 作业与报名:作业是询问对 AI 方向的兴趣和想做的项目,活动报名可通过填写名字和申请新增学校参与。 线下寄送物料组织活动:会给大家寄送线下活动物料,在学校内组织。 AI 春晚即将开始:去年 300 人 30 天共创了 AI 春晚,今年的也即将开始,可报名参与多种岗位。 AIPO 活动及相关挑战:10 月 20 日的 AIPO 活动,可提前构思展示项目,有会话和视频相关的挑战赛。 共学活动与技能提升:接下来 10 天有从零基础到建站等内容的讲解,回放会放在链接里,可先从练习提示词入手。 硬件机器人材料购买:若搞硬件机器人,部分材料需尽快购买。 自媒体发布与流量扶持:在小红书发布活动内容带特定标签有流量扶持,作品也可发布在 GitHub 等平台。 活动奖项与历史玩法:设最佳创业奖和最佳投资奖各四个,有线下摆摊展示交流、IPO 路演等玩法,之前在多个城市举办过 AI 切磋大会。 工具使用与新大赛预告:可使用多种 AI 工具,新的大赛即将开启,有百万奖金池,相关动态会在社区活动栏目公布。 AI 音乐和数字人语音合成: AI 音乐方面,提到草爷、格林 king、狗哥带大家入门,有相关课程与教程,且淘宝上有套壳工具抄袭。社区伙伴做的 AI 音乐专辑不错。 数字人语音合成部分提到声音克隆,有新的声音克隆且音质很不错。 提到了微软新出的成果、阿里的 Cozy voice(指出其泛化能力不强)、大家常用的 GPT solve it、刚举办的 AI 3D 活动。 以小田的 config UI 基础工作流一日谈展开,讲述了多个案例,如许建拍摄场景图成本降低,郭佑萌在图书出版行业提升效率,影楼可进行换装等操作,文旅文创场景有有趣的合影生成方式,还提到该工作流岗位稀缺且社区有课程可供学习。 AJ 介绍平台资源,包括共学课程、专栏报告、数据等,还提及就业创业及一些企业专栏的内容。
2025-02-28
现在Ai已经发展到什么程度了
目前 AI 的发展已不再局限于单一的技术和应用范畴,而是融合了众多学科知识,并深入渗透到生活的各个层面,引发了一场生产力的革命。 有观点认为,AI 引领的是第四次工业革命的浪潮:继蒸汽机引发的机械化变革、电力驱动的电气化革新,以及电脑普及带来的信息化浪潮之后,AI 正推动着智能化时代的到来。 2025 开年 3 个月,AI 已经狂飙!R1 席卷全球,然后是 O3、Grok 3、Claude 3.7、GPT4.5 等,短短 3 个月内,AI 更新密集发布。然而很多人仍未察觉 AI 正在指数级加速,甚至抱怨 GPT4.5 表现不佳,但事实上,AI 发展已经是直线拉升状态,每天都在进步。 此外,Grok 语音模式已全面开放,支持 11 种模式(包括 2 种 18 禁),自带语音字幕,是学习英语的好工具,但目前仅支持英文。
2025-04-13
现在的AI发展到什么程度了
目前,AI 的发展已不再局限于单一的技术和应用范畴,而是融合了众多学科知识,并深入渗透到生活的各个层面,引发了一场生产力的革命。 有观点认为,AI 引领的是第四次工业革命的浪潮,继蒸汽机引发的机械化变革、电力驱动的电气化革新,以及电脑普及带来的信息化浪潮之后,AI 正推动着智能化时代的到来。 2025 开年 3 个月,AI 已经狂飙,更新密集发布,发展速度远超大多数人的预期,每天都在进步。 从技术层面看,Transformer 架构在 2017 年就被提出,但 AI 是近几年才爆发,其中重要因素之一是神经网络的规模。以 GPT 模型为例,从 2018 年第一代的 1 亿左右参数量,到 2023 年第四代的万亿规模(估计),随着参数量的增加,AI 的能力不断提升,在超过一定规模后,出现了“涌现”能力,智能程度飞速上升,但对于这种“涌现”出现的机理,目前还没有统一的解释。可以说,目前 AI 的发展更像是一种“发现”。
2025-03-14
在哪里可以看ai智能程度的排名
目前关于 AI 智能程度的排名,您可以参考以下信息: 《生成人工智能网络安全法案》(GAINS Act)中提到会对其他国家进行调查以确定美国在人工智能采用方面的排名。 AI 智库的月度榜单中,有国内月活榜和国内流量榜。例如在国内月活榜中,有绘影字幕、360 智脑 Chat、阿里通义听悟等产品的排名及相关信息;在国内流量榜中,有爱问财、扣子、Bigjpg 等产品的排名及相关数据。
2025-03-02
如何最大程度的利用自己的PPT,然后使用AI 来优化它?
以下是最大程度利用自己的 PPT 并使用 AI 来优化的方法: 1. AI 生成 PPT 的主要思路: 以爱设计为例,导入大纲到工具生成 PPT。其他工具操作方式大同小异,都是基于 Markdown 语法的内容来完成 PPT 的生成。具体步骤可移步到 MindShow、闪击、爱设计等章节。 优化整体结构,按照公司要求自行优化字体、图片等元素。针对下载后的 PPT,可以删改内容以达到心理预期。 2. 参考案例:卓 sir 利用 AI 完成 PPT 作业,虽然探索写 prompt 花了不少时间,但最终成功完成,包括大纲内容、排版、动画等,感觉良好。 3. 好用的 AI PPT 工具: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。https://gamma.app/ 美图 AI PPT:由美图秀秀开发团队推出,输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。https://www.mindshow.fun/ 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。https://zhiwen.xfyun.cn/
2025-02-26
现在ai发展到什么程度了?
目前 AI 的发展呈现出以下情况: AGI 方面:AGI 尚未取得巨大进展,仍处于不断探索和发展的阶段。AGI 分为五个等级,分别是具备基本对话能力的聊天机器人、具备人类推理水平的推理者、能执行全自动化业务但仍需人类参与的智能体、能够协助人类完成新发明的创新者以及能够自动执行组织全部业务流程的组织。 ANI 方面:ANI 得到了巨大发展,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。 机器学习方面:监督学习因现有数据快速增长、神经网络规模发展以及算力快速发展而近期发展迅速。 数据方面:数据集是由数据组成的集合,通常以表格形式出现,包括结构化数据和非结构化数据。获取数据的方式有手动标注、观察行为和网络下载等。同时,数据的质量和处理也很重要,并非数据多就有用,还需要有效处理不正确和缺少的数据。 大模型方面:开源大模型爆发,未来 AGI 竞争的关键是云端超级大模型,但通用大模型也遇到瓶颈,如算力和知识不够的问题。训大模型需要将饱含人类智慧的高含量知识训进去。
2025-02-09
开发agent有哪些主流的方案,并从功能性,开发难易程度,适用场景进行对比
以下是一些主流的 Agent 开发方案,并从功能性、开发难易程度、适用场景进行对比: 1. Coze: 功能性:集成丰富插件工具,拓展 Bot 能力边界。 开发难易程度:相对较易。 适用场景:适用于构建基于 AI 模型的各类问答 Bot。 2. Microsoft 的 Copilot Studio: 功能性:外挂数据、定义流程、调用 API 和操作,部署到各种渠道。 开发难易程度:适中。 适用场景:适用于多种场景。 3. 文心智能体: 功能性:基于文心大模型,支持开发者打造产品能力。 开发难易程度:适中。 适用场景:多种场景。 4. MindOS 的 Agent 平台: 功能性:允许用户定义 Agent 的个性、动机、知识,访问第三方数据和服务或执行工作流。 开发难易程度:适中。 适用场景:多种场景。 5. 斑头雁: 功能性:基于企业知识库构建专属 AI Agent,提供多种成熟模板,功能强大且开箱即用。 开发难易程度:相对较易。 适用场景:客服、营销、销售等。 6. 钉钉 AI 超级助理: 功能性:依托钉钉优势,提供环境感知和记忆功能,在高频工作场景表现出色。 开发难易程度:适中。 适用场景:销售、客服、行程安排等。 Copilot 和 Agent 的区别: 1. 核心功能: Copilot:辅助驾驶员,更多依赖人类指导和提示,功能局限于给定框架。 Agent:主驾驶,具有更高自主性和决策能力,能自主规划和调整处理流程。 2. 流程决策: Copilot:依赖人类确定的静态流程,参与局部环节。 Agent:自主确定动态流程,能自行规划和调整任务步骤。 3. 应用范围: Copilot:主要处理简单、特定任务,作为工具或助手。 Agent:能处理复杂、大型任务,在 LLM 薄弱阶段使用工具或 API 增强。 4. 开发重点: Copilot:依赖 LLM 性能,重点在于 Prompt Engineering。 Agent:依赖 LLM 性能,重点在于 Flow Engineering,把外围流程和框架系统化。 搭建工作流驱动的 Agent 简单情况分为 3 个步骤: 1. 规划: 制定任务关键方法。 总结任务目标与执行形式。 分解任务为子任务,确立逻辑顺序和依赖关系。 设计子任务执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定节点逻辑关系。 详细配置子任务节点,验证可用性。 3. 完善: 整体试运行 Agent,识别卡点。 反复测试和迭代,优化至达到预期水平。
2025-02-08