Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

哪个大模型找期刊文献最好用

Answer

目前在查找期刊文献方面,不同的大模型各有特点。大模型的特点包括:

  • 架构多样:如 encoder-only 适用于自然语言理解任务,encoder-decoder 用于翻译和摘要,decoder-only 擅长自然语言生成任务。
  • 预训练数据量大:往往来自互联网上的论文、代码、公开网页等,通常用 TB 级别的数据进行预训练。
  • 参数众多:如 Open 在 2020 年发布的 GPT-3 就有 170B 的参数。

但对于哪个大模型找期刊文献最好用,没有明确的定论。不过,您可以关注一些常见的大模型,如 GPT 系列等,并根据实际需求和使用体验来判断。

Content generated by AI large model, please carefully verify (powered by aily)

References

从 0 到 1 了解大模型安全,看这篇就够了

encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。

SD新手:入门图文教程

模型能够有效地控制生成的画风和内容。常用的模型网站有:[Civitai|Stable Diffusion models,embeddings,hypernetworks and more](https://link.zhihu.com/?target=https%3A//civitai.com/)>[Models-Hugging Face](https://link.zhihu.com/?target=https%3A//huggingface.co/models)>[SD-WebUI资源站](https://link.zhihu.com/?target=https%3A//www.123114514.xyz/models/ckpt)>[元素法典AI模型收集站-AI绘图指南wiki(aiguidebook.top)](https://link.zhihu.com/?target=https%3A//aiguidebook.top/index.php/model/)>[AI绘画模型博物馆(subrecovery.top)](https://link.zhihu.com/?target=https%3A//aimodel.subrecovery.top/)[heading3]模型安装[content]下载模型后需要将之放置在指定的目录下,请注意,不同类型的模型应该拖放到不同的目录下。模型的类型可以通过[Stable Diffusion法术解析](https://link.zhihu.com/?target=https%3A//spell.novelai.dev/)检测。大模型(Ckpt):放入models\Stable-diffusionVAE模型:一些大模型需要配合vae使用,对应的vae同样放置在models\Stable-diffusion或models\VAE目录,然后在webui的设置栏目选择。Lora/LoHA/LoCon模型:放入extensions\sd-webui-additional-networks\models\lora,也可以在models/Lora目录Embedding模型:放入embeddings目录

2024 年历史更新(归档)

歸藏的AIGC周刊《[AIGC Weekly#82](https://waytoagi.feishu.cn/wiki/F6P7wiF3wiljbektL6ScgRhQnOd)》,重点介绍了Meta发布的Llama3.1 405B模型,具备128K token上下文窗口及对8种语言的改进,能与领先闭源模型竞争。评估显示其在指令遵循、代码和数学能力上表现优异。同时,还提到AI音乐工具Udio的大规模更新,以及OpenAI推出的SearchGPT搜索功能。文章探讨了人工智能领域的最新动态和研究进展,强调开源AI的重要性。《[一泽Eze:样例驱动的渐进式引导法——利用AI高效设计提示词,生成预期内容](https://waytoagi.feishu.cn/wiki/MJQTwW7y9iDSfrkcFUmc0iCmnlf?fromScene=spaceOverview)》本文介绍了一种样例驱动的渐进式引导法,通过构建初始样例、评估样例、提炼模板与AI对话,最终生成结构化提示词。该方法强调多轮反馈,确保AI理解需求,逐步调整模板,以达到预期效果。作者建议在AI充分理解后,再生成结构化提示词,以提高效率和准确性。最终目标是设计出符合实际需求的有效提示词,提升AI的应用效果。

Others are asking
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
分析英文期刊论文的ai有哪些?哪个好用?
以下是一些可用于分析英文期刊论文的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,以下是一些常见的文章润色 AI 工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可生成符合要求的学术论文。 在 AI 文章排版工具方面: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版的软件,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 通常是受欢迎的选择;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-22
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
根据研究内容推荐合适的投稿期刊的网站
选择合适的期刊投稿网站对于研究人员来说是至关重要的一步。以下是一些广泛使用的期刊投稿网站,它们涵盖了多个学科领域,并提供强大的工具来帮助研究人员找到合适的期刊。 1. Elsevier Journal Finder 网址: 特点: 输入论文标题和摘要后,系统会推荐适合的期刊。 提供期刊的影响因子、审稿时间和接受率等信息。 涵盖了广泛的学科领域。 2. Springer Journal Suggester 网址: 特点: 基于论文标题、摘要和关键词推荐合适的Springer期刊。 提供期刊的审稿时间和接受率信息。 覆盖多个学科领域,包括科学、技术、医学、人文和社会科学。 3. Wiley Journal Finder 网址: 特点: 输入论文的标题和摘要,系统推荐适合的Wiley期刊。 提供期刊的影响因子、审稿时间和接受率等信息。 涵盖广泛的学科领域。 4. Taylor & Francis Journal Suggester 网址: 特点: 通过输入论文的标题、摘要和关键词,推荐适合的Taylor & Francis期刊。 提供期刊的审稿时间和接受率等信息。 覆盖多个学科领域。 5. IEEE Publication Recommender 网址: 特点: 输入论文的标题、摘要和关键词,推荐适合的IEEE期刊和会议。 特别适合工程、计算机科学和电子领域的研究人员。 提供期刊的审稿时间和影响因子等信息。 6. Journal/Author Name Estimator 网址: 特点: 输入论文的标题和摘要,系统基于相似性推荐合适的期刊。 提供期刊的影响因子和相关文献的信息。 适用于生物医学和生命科学领域。 7. Edanz Journal Selector 网址: 特点: 输入论文的标题和摘要,系统推荐合适的期刊。 提供期刊的影响因子、审稿时间和接受率等信息。 覆盖广泛的学科领域。 8. Sage Journal Recommender 网址: 特点: 输入论文的标题和摘要,系统推荐适合的Sage期刊。 提供期刊的审稿时间和接受率等信息。 覆盖多个学科领域。 如何使用这些工具 1. 准备摘要和关键词: 确保你有准确和详细的论文摘要及相关关键词。 2. 输入信息: 在期刊推荐工具中输入摘要、标题和关键词。 3. 分析结果: 根据推荐结果查看每个期刊的影响因子、审稿时间、接受率等信息,选择最适合的期刊。 4. 查阅期刊网站: 在期刊的官方网站查看具体的投稿指南和要求,确保你的论文符合期刊的格式和风格要求。 通过这些工具和方法,你可以更高效地找到合适的期刊投稿,提升论文发表的成功率。
2024-05-29
有论文大纲怎么ai生成一篇完整的论文且文献要真实
利用 AI 生成一篇完整且文献真实的论文,您可以参考以下步骤和建议: 1. 确定课题主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎(如 Semantic Scholar)和文献管理软件(如 Zotero)来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具(如 Quillbot)来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课题涉及数据收集和分析,可以使用 AI 数据分析工具(如 Google Colab、Knitro)来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具(如 Grammarly)来撰写课题的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具(如 Turnitin、Crossref Similarity Check)来确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。 在论文写作领域,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 使用这些工具时,重要的是要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-04-13
ai生成文献综述引言的指令
以下是关于利用 AI 生成文献综述引言的一些指导: 1. 确定课题主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述引言:利用 AI 工具来帮助撰写引言部分,确保内容的准确性和完整性。但需注意,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行写作时,应保持批判性思维,并确保研究的质量和学术诚信。 例如,像“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。”这样的需求,可让 AI 辅助生成。 每次生成后,您还可以通过向提示栏添加更多说明,然后按 Enter 键,以便 AI 根据您的后续说明重新生成,从而进一步优化提示。默认情况下,除了您包含的手动之外,Cursor 还将尝试查找不同类型的有用信息来改进代码生成。其他上下文可能包括相关文件、最近查看的文件等。收集后,Cursor 按与编辑/生成的相关性对上下文项进行排名,并将排名靠前的项目保留在大型语言模型的上下文中。
2025-04-10
已有30多篇参考文献,如何用AI写综述论文
利用 AI 写综述论文可以参考以下步骤: 1. 确定课题主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成综述论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课题涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写综述论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查综述论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保综述论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行综述论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-04-10
论文参考文献自动生成的免费工具,请提供具体下载网址
以下是一些可以自动生成论文参考文献的免费工具及相关信息: 1. 文献管理和搜索: Zotero:结合 AI 技术,能够自动提取文献信息,有助于您管理和整理参考文献。 Semantic Scholar:这是一个由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术为您提供文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,能帮助您精简和优化论文内容。 需要注意的是,这些内容由 AI 大模型生成,请您仔细甄别。您可以通过以下网址获取这些工具: Zotero:https://www.zotero.org/ Semantic Scholar:https://www.semanticscholar.org/ Grammarly:https://www.grammarly.com/ Quillbot:https://quillbot.com/
2025-04-09
最好的AI学术文献搜索软件?
以下是一些较好的 AI 学术文献搜索软件: 1. Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 2. Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 此外,在论文写作和课题研究中,还可以利用其他 AI 工具辅助,如: 1. 内容生成和辅助写作:Grammarly 提供文本校对、语法修正和写作风格建议;Quillbot 可进行重写和摘要。 2. 数据分析:Google Colab 支持 AI 和机器学习研究,便于数据分析和可视化;Knitro 用于数学建模和优化。 在教学中,Claude 和 Gamma.app 这两个工具可以帮助学生做好组会准备,如快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。使用 Claude 时,可以通过对话解决如学术网站条件搜索等问题。
2025-04-01
我是一名日语大四学生,我要利用我的开题报告和文献综述结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
向 DeepSeek 提问时,可遵循以下万能通用的提问公式:提示词=赋予角色+背景/现状+目标/需求+补充要求。 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,以使它更好地理解您的问题,并为您提供更准确的答案。例如您是日语大四学生,正在进行开题报告和文献综述相关工作。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如完成一篇结合开题报告和文献综述的论文初稿。 4. 补充要求:例如指定写作风格要具有吸引力、友好性和幽默感等。 另外,在使用 DeepSeek 时还需注意: 对于像“仅通过东方集团的历年公开财务数据,分析这家公司的潜在投资机会和风险”这样的特定需求,可能需要进一步追问以获得更满意的结果。 与 DeepSeek 交流时,在其提供方法建议后,可以追问背后的方法论。 对于创作类的需求,如脱口秀段子,可以结合特定人物的特点和风格,并指定主题和字数等要求。
2025-03-31
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
最好的制作ppt的大模型是哪个
目前在制作 PPT 方面,没有绝对的“最好”的大模型。例如,Claude 3.7 在将 PDF 转换为 HTML 方面效果较好,但国内用户使用不太方便,可改用 DeepSeekR1 实现。某上市公司使用某互联网大厂研发的千亿 AI 大模型产品声称能 3 分钟制作 PPT,但接入公司系统时出现“一连接就死机”的情况。同时需要注意的是,过去几个月内国内的 AI 大模型在某些方面大同小异,且大部分远未达到可商用化程度。
2025-04-13
画图那个ai最好
目前在 AI 绘画领域,没有绝对最好的工具,不同的工具各有其特点和优势。以下为您介绍一些常见的 AI 绘画工具: Stable Diffusion:有多种相关的插件,如脸部修复插件 After Detailer、UI 界面美化插件 Kitchen、高宽比锁定插件 Aspect Ratio、提示词自动翻译插件 promptallinone、最强控制插件 ControlNet 等,可满足不同的需求。 Photoshop 2023 Beta 爱国版:在某些方面表现出色。 即梦 3.0:在中文场景下有较好的表现,不仅提升了大字的准确性、设计感和丰富度,还大幅改善了小字的稳定性问题。相比即梦 2.1 和 GPT4o 在中文场景中的表现,即梦 3.0 更具优势。 您可以根据自己的具体需求和使用场景选择适合您的 AI 绘画工具。
2025-04-11
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
我应该如何开始0-1学习AI绘画?当前最好用的工具是什么?
以下是一些关于 0 1 学习 AI 绘画的建议和当前好用的工具: 您可以通过观看相关视频教程来入门,比如: “10 分钟教会你如何手把手撰写提示语,全网最细 ChatGPT 对话指南,保姆级教程!” ,视频使用到的 AI 工具包括 AI 提示语,平台链接: 。 “零基础 AI 绘画入门,Midjourney、Stable Diffusion,小白速成,一站式使用和最强入门教程” ,视频使用到的 AI 工具包括 AI 提示语,一个无需魔法上网的 AI 绘画工具,平台链接: 。 目前,Midjourney 和 Stable Diffusion 是比较受欢迎的 AI 绘画工具。
2025-04-10
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10