Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

与 AI 共事,是否改变了你解决问题的方式

Answer

与 AI 共事确实改变了人们解决问题的方式。具体表现为:

  • 更加聚焦目标,避免陷入具体细节。
  • 从实现细节中抽离出来,更加高效地工作。
  • 对复杂问题的理解发生变化,能力在过程中得到提升。
  • 为流程带来全新视角,突破过去能力的限制。
  • 对于个人博客,AI 提供了不同的思路和视角,使其变得可执行可操作。

在医疗保健领域,为了让 AI 产生真正的改变,应创建像优秀医生和药物开发者那样学习的模型生态系统。例如,预医学生和设计新疗法的科学家都需要经历从基础到专业的学习过程,AI 也应如此,通过逐步训练不同的模型,而非仅依靠大量数据和生成模型来解决问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI应用专家的实战经验:如何通过智能工具实现博客的高效数字化转型

最初对AI的理解,确实是希望它能帮我写一些东西,但是真正实际操作下来,发现并没有那么容易。分阶段是必然,这个过程帮我们节省时间是其中一方面,更重要的是让我们对这件事理解更加深刻了。还有一个很重要的原因,我们对复杂的理解不一样了,因为,我们的能力在过程中提升了。[heading2]你会让AI在决策时替你做选择吗?[content]我会让它去帮我找出更多看待这件事的视角和角度,同时也在这个过程中和它学习。更重要的是,需要对它保持足够的警惕。因为,这会是一个新的信息茧房。[heading2]如何让AI成为得力助手,而不是一个只会给出模糊建议的工具?[content]分解任务是很重要的,只有分解合理,我们才能更好的去把控整体的过程。但是这件事是有非常大的边际效应,我们会在这个过程中快速成长。[heading2]在与AI合作解决问题的过程中,你学到了哪些意想不到的东西?[content]最大的感触是它对于流程本身的全新视角,因为流程基于过去的能力限制,但是现在变了。[heading2]当AI给出的解决方案超出你的理解范围时,你会如何应对?[content]实际情况并不会这么绝对,而是在不断探索中找到当前相对合适的解决方案。[heading2]与AI共事,是否改变了你解决问题的方式?[content]它会让我更加聚焦目标,避免陷入具体的细节。在和AI交互的过程中,逐渐意识到,让AI成为助理辅助日常生活,不再是一句口号,一种思维,而是非常具体而实际的事。它让我们从实现细节中抽离出来,让我们更加高效,更加聚焦真正的目标。

AI应用专家的实战经验:如何通过智能工具实现博客的高效数字化转型

当AI能在几分钟内生成详细报告,你还愿意花数小时手动撰写吗?AI已经可以高效解决复杂任务,为什么还要浪费时间?你会让AI在决策时替你做选择吗?如果AI能比你更快发现问题、更精准地预测结果,你会完全信任它的判断吗?如何让AI成为得力助手,而不是一个只会给出模糊建议的工具?如何真正掌控AI,避免让它成为增加工作量的负担?在与AI合作解决问题的过程中,你学到了哪些意想不到的东西?AI不仅能帮你解决问题,还可能让你以全新的方式看待工作流程。当AI给出的解决方案超出你的理解范围时,你会如何应对?面对技术复杂的AI提案,你是选择质疑、理解,还是直接应用?与AI共事,是否改变了你解决问题的方式?AI的思维方式不同于传统方法,这种转变是否让你重新审视问题的解决策略?对于个人博客,有接近10年的痛苦折腾史,接触AI之前,心中有输出的想法,真正写出来1年可能也不超过5篇,很大的原因在于输出过程遇到的障碍非常多。但是AI给出了完全不同的思路和视角,让这件事变得可执行可操作了。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
有哪些解决问题的提示词
以下是一些关于解决问题的提示词相关内容: 在使用 Claude 时,需遵循“Human:”/“Assistant:”的标准格式。对于 API 里的提示词,固定开头为“n\nHuman:”,固定结尾是“\n\nAssistant:”。 提示词要清晰明确,Claude 对清晰明确的提示词反馈最好。如有疑问,可向朋友展示提示词,询问其能否遵循指令做到要求的事。例如“Human:写一首关于机器人的俳句”“Human:写一首关于机器人的俳句。直接输出俳句不要跟我说话”。 可以使用结构化的提示词模板,如长文档示例中的“Human:<doc>{{文档}]</doc> 请用一个五年级学生能理解的语言来总结这篇文档的主要内容。”同时,对于长文档,建议把要问的问题放在提示词的最后面。 让 Claude 更好地接龙时,可以给它开个头儿。 角色扮演(又称角色性提示词)方面,Claude 有时需要了解它应该扮演的角色。
2025-04-08
如何精准提问解决问题
要精准提问解决问题,可以参考以下几点: 1. 在使用类似 Cursor 等工具时,如果在提示栏中按 Option/Alt Enter,它将回答您关于选择和附加上下文的任何问题。此对话内容可在后续生成中进一步使用,在其提出响应后键入“do it”即可在快速提问后生成代码。 2. 相信类似 GPT 等工具的能力,大胆提要求让其帮忙完成。 3. 明确自己的需求,向 GPT 提的要求尽量准确,如同给员工安排工作。 4. 不断追问,只要不明白,就目标明确、表达精确地追问。 5. 对于 GPT 不了解您工作环境和个性需求的情况,提供准确信息,如直接贴出文件目录地址,请其直接处理。 6. 锻炼语言表述能力,更精准地用语言描述问题。因为在语言模型时代,一个好的问题某些时候比答案更重要,语言本身也代表着人类思维的外放,与文明诞生有关联。 7. 具备业务理解和 AI 嵌入能力,找到业务中应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 8. 培养维度转换能力,将各种问题转化为语言问题,将业务中的数据转化为语言描述,将通用模块问题转化为通用问题模块,把所有信息都转化为语言信息后再交流。 9. 在业务助手中,可采用助手方式,主要进行工作辅助,不在主业务流程内,大模型负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考;也可采用业务环方式,大模型经过调整和 prompt 工程后,作为接口服务,进入到主业务流程中,自动处理内容并生成结果。
2025-01-30
大学老师最头疼的场景,能够使用到最多的AI场景解决问题
以下是一些大学老师可能会遇到的头疼场景以及能够用 AI 解决的方式: 学习指导方面: 可以大规模部署个性化的学习计划,为每个学生提供一个“口袋里的老师”,理解学生独特需求,回答问题或测试技能。例如像 Speak、Quazel 和 Lingostar 这样的应用。 对于特定学科的学习,如数学,有像 Photomath 和 Mathly 这样的应用指导学生解决问题;对于历史学习,有 PeopleAI 和 Historical Figures 通过模拟与杰出人物的聊天来教授。 学生在作业中利用 AI 助手,如 Grammarly、Orchard 和 Lex 帮助克服写作难题,提升写作水平。处理其他形式内容的产品,如 Tome 和 Beautiful.ai 协助创建演示文稿。 教学协助方面: 自适应学习,精准回答学生问题,协助教师提供数字资源。 在教育的各个方面,如教学内容、教学场景、教材与教法、教育思想和教育组织形态等,AI 都能发挥作用。 在不同的教育时代,如口传时代、手抄时代、印刷时代、电子媒体时代和数字媒体时代,AI 都能为教育带来新的可能性和改进。 AI 在医疗保健、金融服务、零售和电子商务、制造业、交通运输等行业也有广泛应用: 医疗保健:医学影像分析辅助诊断疾病、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:自动驾驶、交通流量预测、物流优化等。
2024-10-07
现阶段ai工具解决问题的方式方法是什么
现阶段 AI 工具解决问题主要有以下方式方法: 1. 生成式 AI 在艺术创作方面,虽存在幻觉或处理请求时间长等问题,但为满足高级用户需求,许多公司预计会添加如 ChatGPT 那样的“专业版”套餐以提供更高质量服务。 2. AI 工作流:每个工作环节都有自身特点,不能仅依靠一个 AI 工具解决所有问题,而是要为每个环节选择最合适的 AI 工具,通过局部最优解达到全局最优解。AI 能帮助人类迅速写出基础文章,人类在此基础上优化,效率更高。随着大模型进化和提示词能力提升,未来 AI 有望输出更高质量文章。现在学习 AI 工作流是为了提前布局、抢占先机。 3. 在游戏创建领域,第一阶段重点关注工具,生成式人工智能可成为创作者的副驾驶,优化现有 UGC 工作流程,现有平台会添加相关工具,初创公司也会针对其优化工作流程。第二阶段可能会出现从头重新构想创作工作流程的新公司,形成全新创作范式,但具体形式难以预测。
2024-09-27
如何提升解决问题的能力
提升解决问题的能力是一个持续的过程,涉及多个方面的培养和锻炼。以下是一些系统性的方法和技巧,可以帮助你提高解决问题的能力: 1. 了解和定义问题 a. 清晰理解问题 问题陈述:确保你能明确地描述问题,包括问题的背景和关键要素。 问题拆解:将复杂问题分解为多个小问题,逐步解决。 b. 问题分析 5 Whys 法:连续问“为什么”五次,找到问题的根本原因。 鱼骨图(因果图):通过图示法识别问题的潜在原因。 2. 开展系统思维 a. 理解系统 系统图:绘制系统图,了解问题所在系统的各个组成部分及其相互关系。 反馈回路:识别系统中的正反馈和负反馈回路,理解其动态行为。 b. 思维工具 思维导图:使用思维导图整理和关联不同的想法和信息。 SWOT分析:分析问题的优势(Strengths)、劣势(Weaknesses)、机会(Opportunities)和威胁(Threats)。 3. 培养批判性思维 a. 信息评估 证据检验:评估信息的真实性和可靠性,避免信息偏差。 逻辑推理:通过逻辑推理评估结论的合理性,确保没有逻辑漏洞。 b. 偏见识别 认知偏差:了解常见的认知偏差(如确认偏差、锚定效应)并加以避免。 多视角分析:从不同的角度审视问题,避免单一视角带来的偏见。 4. 掌握解决问题的方法和工具 a. 创意思维 头脑风暴:鼓励团队成员提出各种创意和解决方案,不进行立即评估。 SCAMPER 技巧:通过替换(Substitute)、结合(Combine)、调整(Adapt)、修改(Modify)、其他用途(Put to another use)、消除(Eliminate)和重组(Rearrange)等方法产生新思路。 b. 决策方法 权衡分析:评估不同方案的优缺点,权衡利弊,选择最佳方案。 决策矩阵:将各方案按不同的决策标准进行评分和比较。 5. 实践和反思 a. 实践机会 实际案例分析:通过实际案例分析和解决问题,积累经验。 模拟训练:通过模拟训练解决虚拟问题,提升应对真实问题的能力。 b. 持续反思 事后分析:在解决问题后进行事后分析,评估解决方案的效果和改进点。 个人反思:定期进行个人反思,记录和总结解决问题的经验和教训。 6. 培养相关技能 a. 沟通能力 有效沟通:清晰表达问题和解决方案,确保团队成员理解并达成共识。 倾听技能:认真倾听他人的意见和建议,吸取不同的观点和信息。 b. 团队合作 团队协作:充分利用团队成员的知识和技能,协同解决问题。 角色分工:明确团队成员的角色和分工,提高解决问题的效率。 7. 学习和借鉴 a. 学习经典方法 PDCA 循环:计划(Plan)、执行(Do)、检查(Check)、行动(Act),持续改进。 六西格玛:使用DMAIC(定义、测量、分析、改进、控制)方法改进流程和解决问题。 b. 借鉴成功案例 行业标杆:研究和借鉴行业内外的成功案例和最佳实践。 跨领域学习:学习和借鉴其他领域的解决问题方法,拓宽思路。 实施步骤 1. 明确问题:详细描述和定义问题,确保对问题的全面理解。 2. 系统分析:分析问题的根本原因和影响因素,绘制系统图和反馈回路。 3. 创意生成:利用头脑风暴和创意思维技巧,生成多种可能的解决方案。 4. 决策评估:通过权衡分析和决策矩阵,选择最佳解决方案。 5. 实施方案:制定详细的实施计划,明确步骤和责任人,确保方案的有效执行。 6. 效果评估:在实施过程中和结束后,评估方案的效果,进行必要的调整和改进。 7. 总结反思:总结解决问题的经验和教训,进行个人和团队的持续改进。 通过这些系统性的方法和步骤,你可以有效地提升解决问题的能力,应对各种复杂和多变的挑战。如果有具体的问题或领域,可以告诉我,我可以提供更详细的建议和指导。
2024-07-15
如何本地部署大模型,如何选择是否使用云服务商
以下是关于本地部署大模型以及选择是否使用云服务商的相关内容: 本地部署大模型的主要步骤: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 以 SDXL 为例的本地部署步骤: 1. SDXL 的大模型分为两个部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对生成的模型进行细化,生成细节更丰富的图片。还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 2. 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,启动 webUI,就可以在模型中看到 SDXL 的模型。 以 LLM 大语言模型为例的本地部署步骤: 1. 下载并安装 Ollama,点击进入根据电脑系统下载 Ollama:https://ollama.com/download ,下载完成后,双击打开,点击“Install”,安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。如果是 windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车,等待下载完成。 总的来说,部署大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-04-14
你是否可以通过照片生成乐高风格人像
可以通过照片生成乐高风格人像。例如,可以使用相关的工具和技术,像在一些图像生成软件中,通过输入照片并设置相关的风格参数,如选择乐高风格,来实现生成。同时,在生成过程中可以像指挥设计师一样,与工具进行反复交流,对不满意的地方进行修改调整。广义上的像素艺术还包括立体像素艺术(类似乐高那种),相关的咒语关键词如“Pixel art”,生成思路可以是一家像素艺术风格的餐厅等。但需要注意的是,某些工具可能无法创建真正的纯净矢量图像的像素艺术,只是将图像“像素化”的像素艺术。
2025-04-11
那如果自己尝试制作类似工具,你是否可以提供一些帮助呢?
以下是关于自己尝试制作类似工具的一些帮助信息: 制作网站的 AI 工具: Wix ADI: 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 Bookmark: 网址:https://www.bookmark.com/ 特点:AIDA 通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 Firedrop: 网址:https://firedrop.ai/ 特点:Sacha 是其 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 The Grid: 网址:https://thegrid.io/ 特点:Molly 是其 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 在扣子调用已有的 API 制作插件: 1. 点击个人空间,选择插件,点击创建插件。 2. 创建插件: 插件名称:中文,根据插件需求起名。 插件描述:告诉观众插件的用途和使用方法。 3. 插件工具创建方式: 云侧插件基于已有服务创建:使用现成的 API 来创建插件,选择后会跳出必填项“插件 URL”,要填入所使用 API 的 URL。 云侧插件在 Coze IDE 中创建:使用 Coze 的服务器写代码来直接搭建 API(支持 Python 和 Node.JS)。 4. 在新的界面点击创建工具,填入第一个插件工具的基本信息: 工具名称:只能使用字母、数字和下划线来命名。 工具描述:根据工具的使用方法、功能填写,提醒用户如何使用。 工具路径:填写对应完整的 API 以/开始,如果后面使用 path 的方式传参,则可以使用“{}”包裹的方式把变量包含在其中。 请求方法:根据 API 的调用方式选择对应的请求方法。 5. 配置输入参数:点击新增参数,把所有需要使用的参数填写进工具。 开发视角中使用 ChatGPT 的案例: 制作 LaTeX 图表与表格:经常使用 LaTeX 编写文章和内部文件,ChatGPT 能够编写 LaTeX 代码,根据描述或原始数据创建表格和图形,还能解决布局问题和提供建议。可以将图形草图截图发送给 ChatGPT 让其转换成 LaTeX 代码,虽然不是百分之百准确,但能大大节省时间。
2025-04-10
AI workflow在企业中是否比Agent应用价值和场景更多
AI workflow 和 Agent 在企业中的应用价值和场景各有特点。 Agentic Workflows 具有以下优势: 1. 灵活性、适应性和可定制性:能够根据任务难度进行调整和演变,通过组合不同模式实现定制,在需求和复杂性增长时进行迭代升级。 2. 在复杂任务上的性能提升:将复杂任务分解为更小、可管理的步骤,显著优于确定性的零样本方法。 3. 自我纠正和持续学习:能够评估自身行为,完善策略,从过去经验中学习,在每次迭代中变得更有效和个性化。 4. 操作效率和可扩展性:可以高精度自动化重复任务,减少人工操作和运营成本,还能轻松扩展。 Agentic Workflow 的应用场景包括原子设计模式的组合、与人类反馈循环集成等。例如,Agentic RAG 在检索增强生成流程中引入了一个或多个 AI Agents,在规划阶段可进行查询分解等操作,还能评估数据和响应的相关性和准确性。 一般来说,Workflow 是一系列旨在完成特定任务或目标的相互连接的步骤。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流利用大模型或其他 AI 技术,分为 Agentic 和非 Agentic 两类。非 Agentic 工作流中,大模型根据指令生成输出。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,被授予权限收集数据、执行任务并做出决策,利用 Agents 的核心组件将传统工作流转变为响应式、自适应和自我进化的过程。 综上所述,不能简单地说 AI workflow 在企业中比 Agent 应用价值和场景更多,这取决于企业的具体需求和任务特点。
2025-04-09
我想学AI,那么coze是否适合拿来练手学习AI
Coze 适合拿来练手学习 AI,原因如下: 其在智能体开发方面,低代码或零代码的工作流等场景表现较好。 对于没有代码基础和图文审美的人来说,门槛较低。 能让学习者短时间接触大量的应用场景练习和 prompt 练习。 有相关的教学资源,例如从操作界面、业务逻辑和用户界面的学习教程,还有关于数据库等概念的细化讲解。 但同时需要注意,AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。
2025-04-01
是否有做视效的AI软件
以下是一些可用于视效制作的 AI 软件: PS AI:在图片修改阶段有强大功能,能跟上 Midjourney 的质感和细节,例如修改“中景,一盏只开着灯的办公楼”这类图片时,能快速框选并修改。 Midjourney:可生成图片,但存在可控性上限问题,如在处理场景一致性方面表现不佳,局部重绘功能较差。 Dreamina:可将在 SD 的 ControlNet 中生成的图片进行视频生成。 此外,还有一些相关的竞赛活动,如 Project Odyssey 第二季,其中包括渲染与视觉特效、社交媒体短视频创作等类别,设置了多个奖项,还提供了超过 30 种工具的免费额度。
2025-03-19