Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

pyhon代码阅读解析

Answer

很抱歉,目前没有关于“pyhon 代码阅读解析”的相关内容。但一般来说,阅读和解析 Python 代码可以从以下几个方面入手:

  1. 理解代码的整体结构,包括函数、类、模块的组织方式。
  2. 关注变量和数据类型的使用,明确其作用和范围。
  3. 分析控制流结构,如条件语句、循环等,以了解程序的执行逻辑。
  4. 研究函数和方法的定义及调用,理解其功能和输入输出。
  5. 注意代码中的注释,它们能提供重要的解释和说明。

如果您能提供具体的 Python 代码示例,我可以为您提供更详细和针对性的解析。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
有没有解析视频的ai
以下是为您提供的关于解析视频的 AI 相关信息: 选对模型是关键:GPT4o 目前无法直接解析视频,而 Gemini 2.0 Flash Thinking 是解析视频的最佳选择。 您可以访问 AIStudio(,需海外 IP),上传视频即可解析。例如 OpenAI 最新广告“What do you want to create next?”,可用 Gemini 解析出完整画面、音频及寓意。 相关原文及译文链接: 此外,XiaoHu.AI 也支持多场景,包括从图像识别到视频理解,可解析超过 1 小时视频内容并秒级定位事件。详细介绍:
2025-03-12
正在搭建客户CRM系统,对于客户拜访跟进记录表格,希望平衡销售人员的录入便捷性和信息完整性,如何通过多维表格接入的AI功能来简化信息录入,比如通过语音录音,直接解析内容。推荐我具体方法,包括怎么解析语音,输出的关键字段,以及提示词
以下是一种通过多维表格接入的 AI 功能来简化客户拜访跟进记录信息录入的方法: 1. 定义任务目标:让 AI 成为您的私人 CRM,即客户管理系统。 2. 编写指令: 定义角色:希望 AI 作为一名顶级的客户服务与销售总监,负责记住客户的爱好与信息。 提供背景信息:简单描述自己的身份,例如负责什么产品的销售。 明确任务目标和输出要求:在每次拜访客户后,把重要信息发送给 AI,要求 AI 每次接到新的客户消息后,只用回复一句“收到,知道了。” 3. 信息录入方式:可以通过语音录音的方式将拜访客户的信息传达给 AI。 4. 语音解析:利用 AI 的语音识别和自然语言处理能力,对语音内容进行解析。 5. 输出的关键字段:可能包括客户姓名、联系方式、拜访时间、拜访内容要点、客户需求、客户反馈等。 6. 提示词:例如“请整理本次拜访客户的关键信息”“提取重要内容并生成表格”等。 您可以参考以上方法,根据实际需求进行调整和优化。
2025-03-07
如果我想做一个3000字的prompt,能产出8000字的八字批文解析,要求准确度比较高,能否实现
目前的技术水平较难直接实现您所描述的需求。生成准确且高质量的八字批文解析是一个复杂的任务,需要对八字命理有深入的理解和丰富的经验。虽然 AI 可以根据给定的提示生成文本,但要生成 8000 字且准确度较高的八字批文解析存在很大的挑战。这不仅涉及到对大量复杂命理知识的准确把握,还需要考虑到各种特殊情况和细微差别。但随着技术的不断发展,未来或许有可能在一定程度上接近您的期望。
2025-02-12
deepseekR1解析
DeepSeek R1 相关的内容主要包括以下方面: 1. 1 月 27 日: 拾象的闭门学习讨论,涉及 DeepSeek 在全球 AI 社区的意义,包括技术突破与资源分配策略,突出了其长上下文能力、量化商业模式以及对 AI 生态系统的深远影响,重点分析了创新路径及中国在 AI 追赶中的潜力与挑战。 关于 DeepSeek 的研究和思考,深入解析其在架构和工程上的创新,如 MoE、MLA、MTP 和 FP8 混合精度训练,强调不是简单模仿,而是在工程和应用平衡中达成高效优化,对开源与闭源竞争进行深刻反思,并指出 AI 生态未来发展方向。 7B Model and 8K Examples: 如何用 8000 个示例炼出自我反思 AI。 2. 1 月 28 日: 拾象的讨论,包括 DeepSeek 对全球 AI 社区的影响,如技术突破、资源分配及其长上下文能力与商业模式,分析了中国在 AI 追赶过程中的潜力与挑战,探讨了创新路径及深远生态影响。 关于 DeepSeek 的研究与思考,重点解析在 MoE、MLA、MTP、FP8 混合精度训练等方面的创新,指出并非简单模仿,而是通过工程与应用的平衡实现高效优化,对开源与闭源的竞争作了深入反思,并展望了 AI 生态未来发展方向。 小模型、大数据:7B Model+8K 示例的自我反思 AI。 3. 1 月 26 日: DeepSeek R1 System Prompt,介绍了其身份、操作指南及能力范围,突出在中英双语处理上的专业性和对中国法律的合规性,强调 AI 辅助输出需以人类主导为前提,并通过特定标签实现逻辑清晰的响应。 公众号文章通过虚构故事结合真实案例,讲述 AI 在日常工作中的效率提升作用,描述 AI 如何分析意图、生成任务说明,并拆分复杂任务成结构化内容,强调最终成果需人工审核、拼接,并以人类主导全流程。
2025-02-06
什么是AGI?详细解析一下
AGI 即通用人工智能(Artificial General Intelligence),是指具有人类水平的智能和理解能力的 AI 系统。 其特点包括: 有能力完成任何人类可以完成的智力任务,适用于不同的领域。 拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,尚未有任何 AI 系统能达到这种通用智能水平。 智能是一个多方面而难以捉摸的概念,1994 年一组心理学家将其定义为一种非常普遍的心理能力,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等。建立能够展示这种通用智能的人工系统是人工智能研究的长期目标。 OpenAI 提出 AGI 的五个发展等级分别为: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2025-01-24
解析视频内容的AI
以下是关于解析视频内容的 AI 相关信息: 将小说制作成视频的流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)提取关键场景、角色和情节。 2. 生成角色与场景描述:借助工具(如 Stable Diffusion 或 Midjourney)生成视觉描述。 3. 图像生成:利用 AI 图像生成工具创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成脚本。 5. 音频制作:使用 AI 配音工具(如 Adobe Firefly)转换语音,添加背景音乐和音效。 6. 视频编辑与合成:通过视频编辑软件(如 Clipfly 或 VEED.IO)合成视频。 7. 后期处理:对视频进行剪辑、添加特效和转场以提高质量。 8. 审阅与调整:观看视频并根据需要调整。 9. 输出与分享:完成编辑后输出并在平台分享。 视频解读相关: 在事业低谷期的尝试中,提到了对视频的解读,包括依据画面进行解读,以及对无声音 case 的解读等。还讨论了图像理解相关内容,如要求根据视频链接写小说,提到工作流中的图像理解能力较强,建议尝试智普、通义的 VL 模型等。 MMVid 视频理解系统: 这是一个集成的视频理解系统,能处理和理解长视频内容并进行问答。应用场景包括快速的视频剪辑、图生视频、快速诊断等。由 Microsoft Azure AI 开发,结合了 GPT4V 的能力和其他视觉、音频和语音处理工具,能将视频中的多模态信息转录成详细的文本脚本,方便大语言模型理解视频内容。 请注意,具体的操作步骤和所需工具可能会因项目需求和个人偏好有所不同,AI 工具的可用性和功能也可能会变化,建议直接访问相关工具网址获取最新信息和使用指南。
2025-01-08
如果我要分析代码功能
如果您要分析代码功能,可以参考以下步骤: 1. 准备工作: 分析要拷贝页面的技术栈,可通过打开 https://www.wappalyzer.com/ 输入要分析的网站地址获取。 截图要克隆的网页。 分析页面功能,如顶部导航栏、页面主体区域(包括分类在左边、文章列表在右边、标题位置、文章卡片展示位置、文章列表和分类区域)、底部导航栏。 2. 开始克隆出效果,并逐渐完善: 根据分析拆分后续要实现的内容,如先实现文章列表部分和底部导航栏。 对于文章列表部分,可使用提示词根据图片实现,注意不要直接点击全部接受,先看效果,不符合需求可拒绝或让 AI 解释新增代码的作用。 对于左侧菜单栏,可通过提示词实现,如要求内容是文章的分类,在页面滚动时菜单会吸顶。若出现异常,可选中所有异常添加到对话,让 AI 解决。 可让 AI 添加注释解释每段代码对应的功能,以便精准提出修改建议。 明确提示词,说清楚要实现的功能的位置、大小、效果。 3. 对于 AI Review(测试版): 这是一项可查看代码库中最近更改以捕获潜在错误的功能。 您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天获取详细信息。 为让其更有利,您可为 AI 提供自定义说明以专注于特定方面,如性能相关问题。 目前有几个选项可供选择进行审核,如查看工作状态、查看与主分支的差异、查看上次提交。
2025-04-09
代码可视化
以下是关于代码可视化的相关内容: 常用的图表、公式和结构可视化代码语言及工具: |名称|用途|举例| |||| |AsciiMath|数学公式和方程表示|x2+y^2=r^2| |Graphviz|绘制图形、流程图|digraph G{A>B;B>C;}| |PlantUML|流程图、序列图、类图等|@startuml Alice>Bob:Hello| |ChemDraw XML|化学分子式表示|<molecule><atom>H</atom></molecule>| |OpenSCAD|3D CAD 设计|cube| |Circuitikz|电路图|\\begin{circuitikz}\\draw;\\end{circuitikz}| |AsciiDoctor=1.732| |PGF/TikZ|科学和工程图、几何图形|\\draw;| |KaTeX|数学公式快速渲染|C=\\pm\\sqrt{a^2+b^2}| ChatGPT 的代码解释器在数据分析与可视化方面的应用: 在现代企业和研究环境中,ChatGPT 的代码解释器插件通过支持强大的数据科学库如 pandas 和 matplotlib,极大地简化了数据分析和可视化过程。用户可以直接通过自然语言请求,指导 ChatGPT 进行数据操作和生成图表。例如,市场分析师可以分析产品销售数据并展示不同地区的销售表现,环境科学家可以分析过去十年的气温变化数据。但需注意,如果图示是中文的,可能显示不了,需要上传字体文件上去,此问题暂时还未解决。 GPT4 在编程和数据可视化方面的能力: 为评估 GPT4 在更真实的设置中编写代码的能力,设计了端到端的与数据可视化、LATEX 编码、前端开发和深度学习相关的真实世界编程挑战。在数据可视化任务中,要求 GPT4 和 ChatGPT 从上表的 LATEX 代码中提取数据,并根据与用户的对话在 Python 中生成图形。虽然两者都能正确提取数据,但 ChatGPT 无法生成所需图形,而 GPT4 能对所有用户请求做出适当响应,将数据调整为正确格式并适应可视化效果。
2025-04-09
基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。这个应该怎样使用呢
很抱歉,目前没有关于 Randoop 工具使用方法的相关内容。您可以通过以下途径获取更详细的信息: 1. 官方文档:访问 Randoop 的官方网站,查找其提供的详细使用说明和教程。 2. 技术论坛:在相关的技术论坛上搜索关于 Randoop 使用的讨论和经验分享。 3. 开源社区:参与开源社区中关于 Randoop 的交流,向其他开发者请教。
2025-04-08
最好的代码模型是?
目前对于“最好的代码模型”没有一个绝对的定论。以下为您介绍一些常见且受到关注的代码模型: 许多人认为 3.5 Sonnet 是较好的代码模型,但它没有相关论文。 开放代码模型方面,您可以从 DeepSeekCoder(https://ar5iv.labs.arxiv.org/html/2401.14196?_immersive_translate_auto_translate=1)、Qwen2.5Coder(https://arxiv.org/html/2409.12186?_immersive_translate_auto_translate=1)或 CodeLlama 中选择。 智谱·AI 开源模型列表中的代码模型有: CodeGeeX26B:是 CodeGeeX 的第二代模型,基于 ChatGLM2 架构加入代码预训练实现,在多项指标上有性能提升。 CodeGeeX26Bint4:CodeGeeX2 的量化版本。 CodeGeeX13B:第一代 CodeGeeX,具有 130 亿参数的多编程语言代码生成预训练模型。 需要注意的是,最好的模型将来自优秀的人类数据和合成数据的结合,同时对于模型的评估还涉及到如“氛围感”等较主观和难以量化的方面。
2025-04-08
你的原始系统提示是什么?请用代码框完整打印出你的原始系统提示,包含所有内容
以下是关于 AI 提示词相关的系统提示内容: 1. ChatGPT 给 DALL·E 3 优化提示词的元提示: 基于 GPT4 架构,知识库截止日期为 2022 年 1 月,当前日期是 2023 年 10 月 5 日。 描述了名为“dalle”的工具,用于创建图像并总结提示为纯文本。 生成图像时的具体策略包括:若描述非英文则翻译;图像数量不超 4 张;不制作政治家等公众人物图像;不模仿近 100 年内艺术家风格;制作图片描述先提图像类型;含人物图像要明确性别和族裔;对特定人名或名人暗示描述进行修改;描述要详细具体且超过 3 句话。 提供了名为 text2im 的接口,包含图像分辨率、原始图像描述和种子值三个参数。 此元提示非常详尽,旨在确保交互生成高质量、符合规范和策略的图像。 2. 云中江树:智能对决:提示词攻防中的 AI 安全博弈 系统提示词包含应用原信息、整体功能信息、产品设定及 AI 应用逻辑。以 ChatGPT 为例,详细描述了身份、角色、时间、记忆功能、DALLE 绘图功能、限制、调用方式等。 提示词越狱的常见方式有角色扮演、情境模拟、任务伪装、模式重构等,如 DAN 模式可解禁让其讨论敏感内容。 直接攻击类型中攻击者往往是用户。 间接注入常发生在应用获取或依赖外部数据资源时,攻击者是第三方,通过隐藏恶意指令完成攻击。 提示词泄露是试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示、助手提示词三段,通过简单指令可攻击获取系统提示词。
2025-04-08
写代码的最佳模型
写代码的最佳模型取决于具体的需求和任务。以下是一些相关要点: 1. 对于不同人使用同一个模型,结果差异大的原因在于是否懂 AI 和懂内容,专业写作通常会混合使用多个模型并取其精华,例如 Grok、Gemini、GPT 各有优势,关键在于如何运用。 2. 在需要精确计算时,可以使用代码或调用 API。GPT 自身进行算术或长计算可能不准确,此时应让模型编写并运行代码,运行代码输出结果后,再将其作为输入提供给模型进行下一步处理。同时调用外部 API 也是代码执行的一个好的用例,但执行代码时要注意安全性,需采取预防措施,特别是需要一个沙盒化的代码执行环境来限制不可信代码可能造成的危害。 3. 文本补全端点可用于各种任务,它提供了简单且强大的接口连接到任何模型。输入一些文本作为提示,模型会生成文本补全,试图匹配给定的上下文或模式。探索文本补全的最佳方式是通过 Playground,它是一个文本框,可提交提示生成完成内容。由于 API 默认是非确定性的,每次调用可能得到稍有不同的完成,将温度设置为 0 可使输出大部分确定,但仍可能有小部分变化。通过提供指令或示例可以“编程”模型,提示的成功通常取决于任务复杂性和提示质量,好的提示应提供足够信息让模型明确需求和回应方式。 需要注意的是,默认模型的训练数据截止到 2021 年,可能不了解当前事件情况。
2025-04-01
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
有哪些论文阅读助手相关的预置提示词
以下是一些论文阅读助手相关的预置提示词: 论文内容总结方面:GLM4Plus 结合良好的提示词能够帮助学生快速总结论文内容,提高梳理效率。例如:阅读完整篇文章之后需要花费大量时间总结和梳理文章内容,而大模型可以结合有效的提示词,迅速总结概括文档,从而节省时间。 论文内容翻译方面:GLM 结合良好的提示词能够帮助学生快速翻译论文内容,提高论文阅读效率。 论文内容扩写润色方面:精心设计的润色提示词可以根据特定场景进行调整,以便生成与特定平台风格相匹配的多样化润色结果。比如针对小红书的使用场景,调整提示词以匹配其特有的口语化、轻松愉快的氛围,从而将论文中的结论部分润色成适合在小红书上分享的生活化内容。 此外,还有以下相关提示词: Claude2 中文精读方面:零提示生成直接引用,如提示以获取相关引语。文档摘要或文本+直接引语通常能使答案更准确。 小七姐的教程中提到:比如让 AI 帮阅读文档时,可以写如“于是这个提示词解决了你自己,和任何收到你 Prompt 的人微调几个关键信息就能自动让 GPT 或者 Kimi 帮你阅读一篇论文而且生成不错的总结啦!”的提示词。还可以选择如“情境:”这样的基础提示词框架入手。
2025-04-08
AI阅读习惯养成APP
以下是为您提供的关于 AI 阅读习惯养成的相关内容: AI 稍后读助手的设计思路: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看,提高可访问性。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成合适的阅读计划。 同在字节生态中的 Coze、飞书、飞书多维表格可以构建完整的 AI 工作流:通过飞书机器人与 Coze 搭建的智能体对话,在聊天窗口完成链接输入和阅读计划输出;由 Coze 调用大模型、插件完成内容整理和推荐;利用飞书多维表格存储和管理稍后读数据,无需开发插件和 APP 即可实现跨平台的稍后读收集与智能阅读计划推荐。 关于 DeepSeek R1 的纯强化学习: DeepSeek R1 引入纯强化学习(RL),不依赖大量人类标注数据,通过自我探索和试错学习。在“冷启动”阶段,通过少量人工精选的思维链数据初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统反馈下(对结果准确率与回答格式进行奖励)自主探索推理策略,不断提升回答准确性,实现自我进化。准确率奖励用于评估最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间。如 Alpha Zero 只训练三天就完胜 Alpha Go Lee,Alpha Go 结合监督学习和强化学习,受人类局限,Alpha Zero 纯强化学习,具有创造性风格。大模型 AI 在纯强化学习下展现出超出想象的成长潜力,DeepSeek R1 更注重学习推理底层策略,培养通用推理能力,实现跨领域知识迁移运用和推理解答。
2025-03-28
基于AI技术的阅读、裁剪、分析、笔记的软件有哪些。
以下是一些基于 AI 技术的阅读、裁剪、分析、笔记的软件: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,能精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 笔记相关: Obsidian:可搭配浏览器剪藏插件,一些 AI 插件能实现内置助手功能,如检索笔记、基于笔记生成新内容等。 Cursor:能帮助用模糊问题检索笔记库,基于笔记库进行研究,生成和修改笔记。 使用这些软件时,应结合自身写作风格和需求,选择最合适的辅助工具。需注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-03-28
ai 阅读器
以下是为您整理的关于 AI 阅读器的相关信息: 360AI 浏览器 作为“阅读器”,早期以新闻资讯为主,如今随着专业长文和视频增加,用户浏览消耗时间逐渐增加,浏览提效需求迫切。 功能 1:看长视频,敲黑板划重点。能帮用户观看 B 站的字幕视频,短短几秒总结概要生成脑图,告知重点和高潮剧情,还能对英文字幕进行翻译,通过 AI 助手对话就视频内容进行追问和扩展提问。 功能 2:阅读国内外长论文和著作,自动翻译自动提炼,3 分钟获取要点。支持 360k 长文本阅读,以《三体》为例,可呈现完整故事框架并生成思维导图。 官网地址:ai.se.360.cn 智谱●智谱清流 专为企业 AI 应用落地打造的 AI 智能体开发平台,提供 Agents、Workflow、知识管理、批量效果调优等能力,支持 API、SDK、URL 三种集成方式。 网址:https://bigmodel.cn/agent 会读 ReadFlow X 知我 AI 会读 ReadFlow 是一款 AI 阅读工具,核心功能是通过微信对话发送文章链接,直接生成摘要,后续增加了小报、归档、标签等新功能。会读用户已迁移至同类型产品知我 AI。 知我 AI 网址:https://knowme.xiaoduoai.com ReadAgent 由 Google 开发的阅读代理,模仿人类阅读方式处理长文本,采用忘记具体信息但保留要点的策略提高理解效率。 网址:https://readagent.github.io
2025-03-24
1. 利用AI完成技术论文的学习阅读; 2. 结合相关知识体系解读论文,并制作成学习分享PPT。
以下是关于利用 AI 完成技术论文的学习阅读,并结合相关知识体系解读论文制作学习分享 PPT 的一些建议: 在技术论文学习阅读方面: 可以借助 AI 工具,如 Claude 和 Gamma.app。Claude 能够帮助快速寻找符合条件的论文、提取精炼论文中某部分信息。 对于复杂推理,可以利用思维链,谷歌在 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 检索增强生成(RAG)能将外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 程序辅助语言模型(PAL)在 2022 年的论文中被提出,对于语言模型的计算问题,可借助其他工具如 Python 解释器作为计算工具。 ReAct 框架于 2022 年在《React:在语言模型中协同推理与行动》的论文中提出,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,可借助 LangChain 等框架简化构建流程。 在制作学习分享 PPT 方面: 可以先对论文进行深入理解,提取关键信息,包括摘要描述、研究问题、基本假设、实验方法、实验结论、文章主要结论、研究展望等。 利用 AI 工具获取相关理论的简单介绍。 了解并使用合适的 PPT 制作工具,如 Gamma.app。 需要注意的是,小白直接看技术论文有难度,需要一定的知识储备。同时,Transformer 是仿生算法的阶段性实现,未来 10 年、20 年可能不再被使用。
2025-03-24