Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么样的模型或者工具组合可以实现一键抠图?

Answer

以下模型或工具组合可以实现一键抠图:

  1. 在 Yeadon 提供的图像流搭建中,智能处理工具包括“智能抠图”,可以帮助快速完成抠图任务。在图像流编辑界面,左侧的工具栏集合了所有可能用到的功能,其中智能处理工具中的“智能抠图”能够一键去除图片背景。
  2. 在【SD】相关内容中,虽然主要介绍的是放大算法,但也提到了一些图像处理的相关内容。可以通过相关工具和设置来实现一键抠图的可能。

需要注意的是,具体的实现效果和操作可能因不同的场景和需求而有所差异。

Content generated by AI large model, please carefully verify (powered by aily)

References

Yeadon:写给小小白的-从游戏入手学习搓图像流bot

由于文本类型大语言模型无法直接生成图片,但是我们设计的智能体需要有对应的功能,因此我们要通过【技能】部分的图像流,为文本大模型提供图像生成能力。比如我们的marvin机器人需要有个生成海报的能力,所以我们需要为bot加入图像流,按照下面步骤创建图像流并设定图像流名称以及描述(注意名称只能是英文)[heading3]步骤二:了解图像流节点的意义[content]在图像流编辑界面,左侧的工具栏集合了所有你可能用到的功能。这些工具大致可以分成几类,让我们先了解最常用的部分。智能处理工具包括"智能生成"、"智能抠图"和"画质提升"等,它们可以帮你快速完成一些复杂的图片处理任务。比如你想要去除图片背景,用智能抠图就能一键完成。基础编辑工具则是我们最常用到的。画板、裁剪、调整、添加文字这些功能可以满足日常图片编辑需求。像调整图片大小、裁切形状、加个文字说明这些都可以轻松搞定。如果你想让图片更有创意,可以试试风格处理类的工具。风格迁移能让照片秒变艺术画,背景替换能帮你换个好看的背景,这些都是让图片与众不同的好帮手。别被这么多工具吓到,你不需要一次就掌握所有功能。建议从基础编辑工具开始尝试,熟悉了再去探索其他有趣的功能。每个工具点开就能看到详细设置,同时你可以尝试动手操作看看效果。右侧看起来像一个画布,拖拽左侧的工具或点击+在可以在这里拖放各种工具模块,工具之间可以连接,形成工作流程[heading3]步骤三:根据需求进行图像流设计[content]1.生成海报功能在总结故事后,将完整的故事作为输入2.输入的故事进行一轮提示词优化从自然语言转变为更符合文生图大模型的提示词3.将优化后的提示词输入生图大模型,调整生图的基础风格和信息,输出最终的配图海报[heading3]步骤四:测试图像流

【SD】图片高清化+面部修复+一键抠图,一些你不知道的事儿

首先是关于放大算法,如果大家用的都是秋叶大佬的整合包的话,算法总共应该就是这些。常用的就是“R-ESRGAN 4x+”做写实图片,“R-ESRGAN 4x+Anime6B”做二次元图片。但是经常去C站,copy一些别人的作品却老是发现他们用的放大算法是什么“4x-UltraSharp”之类的高级货。那就是因为,这些高端的放大算法,你还没下载。所以,我在这里整理了四款更厉害的放大算法,分别是:“4x-UltraSharp”、“8x_NMKD-Superscale_150000_G”、“8x_NMKD-Typescale_175k”、“16xPSNR”。并将它们放在了云盘里,大家下载之后,将这四款放大算法放入“……\sd-webui-aki-v4.2\models\ESRGAN”这个路径之中,然后重启软件。就可以看到这四款新的放大算法了。我们以这张图作为例子来测试一下,这张图片现在分辨率是512*512。我将这张图发送到后期处理,分别使用一个传统算法“Lanczos”、一个常用算法“R-ESRGAN 4x+Anime6B”,和刚才下载的四个算法做一个对比。图片太小,大家可能看不清细节,我直接来做一下总结。传统放大算法Lanczos对原图没有任何优化,仅仅只是放大像素,直接pass。曾经的王者“R-ESRGAN 4x+Anime6B”表现蛮好的,放大之后,图片有了更多的细节和更清晰的轮廓。但是和新晋放大器“4x-UltraSharp”比起来,还是弱了一些,“4x-UltraSharp”拥有更清晰的细节,而且没有过度锐化的部分。

Others are asking
一键抠图
以下是关于一键抠图的相关内容: 【TecCreative】帮助手册: 操作指引:点击智能抠图卡片,上传需要抠出主体物的图片。 可参考视频: 【SD】图片高清化+面部修复+一键抠图,一些你不知道的事儿: 背景去除:需要安装插件REMBG,安装地址是https://github.com/AUTOMATIC1111/stablediffusionwebuirembg.git。安装好之后重启,就有选项框。使用时模型选第一个u2net,直接点击生成。抠图效果不错但边缘轮廓可能有黑边,可通过点击Alpha matting调整参数(Erode size:6、Foreground threshold:143、Background threshold:187)去掉黑边,还可直接生成蒙版。此外,还有专门做服装和动漫抠图的模型。 若想要插件,可添加公众号【白马与少年】,回复【SD】获取。 【SD】用AI给老照片上色:将照片放入后期处理中,使用GFPGAN算法将人脸变清晰,可参考文章——。五官重绘后,若要将头发、衣服等元素变清晰,可将图片发送到图生图中,打开stableSR脚本放大两倍,切换到sd2.1的模型进行修复,vae选择vqgan,提示词可不写。
2025-03-04
抠图换装
以下是关于抠图换装的相关内容: 在 SD 中,画蒙版存在一定难度。在 SD 里用鼠标涂画笔工具少且不稳定,精确绘制困难;在 PS 里画蒙版虽简单但流程麻烦,需不停导入导出图片且有人可能不会 PS。 对于大多数人,能在一个软件解决就不开第二个。基于此,介绍 SD 中的抠图神器 Segment Anything,它是基于深度学习算法的图像分割工具,能将图像像素分配到对应区域,实现精准边缘识别,自动检测提高分割效率。 另外,GFPGAN 可进行面部修复,找一张模糊人像,将其参数拉到 1 即可。背景去除需安装插件 REMBG,安装地址是 https://github.com/AUTOMATIC1111/stablediffusionwebuirembg.git 。安装重启后有选项框,测试抠图效果不错但有黑边,可通过点击 Alpha matting 调整参数如 Erode size:6、Foreground threshold:143、Background threshold:187 去掉黑边,还能直接生成蒙版。此外,还有专门做服装抠图的模型,方便换装处理,也有专门给动漫抠图的模型。 在 MJ 应用中,提到做一些秀气女性角色时,style expressive/style cute 有一定效果。出图靠量累积,实现基本统一画风后可进一步抠图换底。非人生物的 OC 出图成功率低,如 2 号机器人生成方便,3 号神秘人难做,可先绘制符合部分要求的图像再局部重绘。7 号泰迪熊先生同理,MJ 出的泰迪熊多为全身像,可扩展出身体。
2025-03-03
AI抠图工具
以下为关于 AI 抠图工具的相关内容: 可以使用 remove 直接抠图,也可以安装在 PS 里进行操作。图片上传即可抠图,可用于制作一些素材,如叶子飘落、战斗时石头等素材,以辅助制作氛围动画。 对于复杂的图片,如多人多活动的图,可采取以下步骤: 首先将长图分多个模块。 第二步进行智能抠图,用工具把要动的内容去除掉,用 AI 生成图片部分。 第三步将要动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 第四步用 AI 视频生成工具写入提示词让图片动起来,如即梦、海螺、混元等工具,不停尝试抽卡。 第五步用剪映把抽卡合格的视频放在去掉内容的背景图片,通过视频的背景用色度抠图调整去掉背景。多个视频放在背景图片,一起动即可。
2025-03-01
AI抠图
以下是关于 AI 抠图的相关内容: 可以直接抠图,也可以安装在 PS 里进行操作。图片上传即可抠图,可用于制作一些素材,如叶子飘落、战斗时石头等素材,以辅助做一些氛围动画。 对于复杂的多人多活动的图,可采取以下步骤: 图片分模块:将长图分成多个模块。 抠出背景图:用工具把要动的内容去除掉,用 AI 生成图片部分。 绿幕处理前景图:将要动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 前景图动态生成视频:使用 AI 视频生成工具写入提示词让图片动起来,如即梦、海螺、混元等工具,不停尝试抽卡。 生成视频去掉背景:用剪映把抽卡合格的视频放在去掉内容的背景图片上,通过色度抠图调整去掉视频背景。多个视频放在背景图片上一起动。 如果图片有水印,可以把图片向下拓展一部分然后截掉。
2025-03-01
AI抠图
以下是关于 AI 抠图的相关内容: 可以直接抠图,也可以安装在 PS 里进行操作。图片上传即可抠图,可用于制作一些素材,如叶子飘落、战斗时石头等素材,以辅助制作氛围动画。 对于复杂的多人多活动的图,可采取以下步骤进行抠图: 首先,将长图分多个模块。 第二步智能抠图,用工具把要动的内容去除掉,用 AI 生成图片部分。若有水印,可以把图片向下拓展一部分然后截掉。 第三步将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 第四步用 AI 视频生成工具写入提示词让图片动起来,可用的工具如即梦、海螺、混元等,不停尝试抽卡。 第五步用剪映把抽卡合格的视频放在去掉内容的背景图片,视频的背景用色度抠图调整去掉。多个视频放在背景图片,一起动即可。
2025-03-01
批量抠图100张图片
以下是批量抠图 100 张图片的方法: 1. 登录星流:输入用户名密码登录,星流每天提供 100 免费点数可生成 100 张图片。 2. 输入对应的提示词,点击生图,默认生图一张图片 1 个积分,每次生成 4 张图,可多抽几次选择喜欢的图片。 3. 对杯中的内容进行局部重绘: PS AI 处理:把生成好的图片下载下来导入到可使用生成式创造功能的 PS 中,使用选区工具选择杯中鲨鱼部分,点击创成式填充按钮输入 prompt 等待生成。 直接用星流处理:选中需要处理的图片,点击顶部局部重绘按钮,选择杯子中间有水的地方,在右边输入框输入提示词“白色的杯子里装着水”点击生成等待。 另外,还为您推荐一个自动抠图的网站:把所有图片批量进行统一分辨率裁切,分辨率需是 64 的倍数。
2025-02-23
有没有一键生成流程图的AI。参考[一招搞定:用AI秒生成专业流程图](https://mp.weixin.qq.com/s/cSLHwMFQhfU-VjSvRDJhzw)
目前有一些可以一键生成流程图的 AI 工具,例如: Lucidchart: 注册并登录: 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 利用这些 AI 工具,可以快速、高效地创建专业的流程图,满足各种工作和项目需求。但需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-03-18
comfyui怎么一键连接节点
要在 ComfyUI 中一键连接节点,可以按照以下步骤进行操作: 1. 了解成对的节点:SetNode 可当成无线发射器,GetNode 可当成无线接收器。一个发射器可以对应多个接收器,但它是定向发射的,不会自动连接。 2. 添加节点的方式:推荐在普通节点上点击右键,找到“添加设置节点”和“添加获取节点”。需注意从输出拉出连线后的查找节点列表里找不到这两个节点。 3. 具体连接操作:将输出连接到“SetNode”节点上,并为其起一个好记的名字。在要连入的节点附近添加“GetNode”节点,选择刚刚起的名字,把这个节点和要输入的部分连接上即可。 此外,ComfyUI 的核心是其节点式界面,节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点等)、处理节点(如采样器节点、调度器节点等)、输出节点(如图像输出节点)和辅助节点(如批处理节点、图像变换节点等)。用户可以通过拖动节点之间的连接线来构建整个工作流,还可以创建自定义节点来扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes。ComfyUI 的界面包括顶部工具栏(包含全局操作和工具)、左侧面板(用于显示节点库)和中央画布(主要工作区域)。
2025-03-13
我是小白,想做一个自媒体全媒体一键管理AI,帮助自媒体创业者一键管理全媒体平台的数据,内容,客户以及产品,怎么实现
要实现自媒体全媒体一键管理 AI 帮助自媒体创业者管理全媒体平台的数据、内容、客户以及产品,可以参考以下思路: 首先,对于将 PDF 一键变成能玩的可视化网页,整体思路来自于归藏。在藏师傅的基础上稍作修改的 prompt,目前在 Claude 3.7 Sonnet 效果最佳,其他大模型生成的审美可能稍差。可以将 prompt 用于 Claude 自己的官网、trea 海外版、cursor 等能使用 Claude 3.7 的产品。 使用时,prompt 整体基本可复制,但细节部分需修改: 1. 作者信息部分改成自己的内容。 2. 媒体资源部分,可加上自己特定要出现的图片/视频。不需要的直接删掉这一块。若使用网上现成的图片,直接右键复制图像链接;若是自己的图片,可使用图床服务(如 https://sm.ms/)托管图片生成公链,然后用 Markdown 格式贴到媒体资源处。注意文档上传时,图片不要跟着文档一起上传,可能会有显示错误,尽量用公链。 虽然上述是关于将 PDF 变成可视化网页的方法,但其中的思路和技术或许能为您实现自媒体全媒体一键管理 AI 提供一些启发和借鉴。
2025-03-13
AI一键生成海报
以下是关于 AI 一键生成海报的相关内容: 即梦生图 2.1 版本能够根据简单的提示词智能理解创意需求,一键生成融合图片内容与中英文文本的海报。应用场景广泛,包括 LOGO 设计、表情包生成、节日与节气海报制作等。 例如,在 LOGO 设计中,提示词可以是“皮克斯风格,五彩缤纷风格,文字‘烧拍’,超高清”;在表情包生成中,提示词可以是“卡通风格,表情包,可爱的小熊猫,四宫格分别是文字是‘多读书’‘多看报’‘少吃零食’‘多睡觉’”;在节日与节气海报制作中,如冬至海报,提示词可以是“水墨画风格,冬至海报,汤圆,梅花,雪,海报右上角大字草书字体‘冬至’,中间下方文字‘瑞雪兆丰年’,超高清”。 此外,在一些活动中,如 AI 市集,AI 不仅能调酒、占卜,还能自动生成海报。例如,有摊主开发的 AI 能在提供鸡尾酒配方的同时生成海报。 在女神节海报设计方面,可以利用即梦 AI 工具,操作简单,只需 3 步:打开即梦 AI 选择“图片生成”功能,模型选择图片 2.1 并输入提示词,点击生成即可。同时还提供了多个海报案例的提示词,如案例一的提示词为“女神节主题,3D 设计,梦幻氛围,明亮春天场景,花田,数字 38,天空‘女神节’,五彩缤纷的蝴蝶,晴朗的蓝天,茂密的绿色草地,盛开的花朵,柔和光线”;案例二的提示词为“粉色主题,梦幻氛围,数字 38,心形气球,花卉装饰,玫瑰花,漂浮的花瓣,柔和的云朵,美丽的湖面倒影,奇幻风格,柔和的色调,庆祝场景”;案例三的提示词为“妇女节,3D 设计,粉色主题,大号装饰数字 38,爱心,郁金香花朵,柔和光照,背景城市天际线,精致花卉装饰,优雅节日氛围,金色文字,春天氛围,细致鲜艳”。
2025-03-09
利用智能体可以实现一键生成ppt吗
利用智能体可以实现一键生成 PPT。以下是一些相关的信息: 爱设计&AiPPT.cn 是一家 AIGC 数字科技企业,旗下的 AiPPT.cn 致力于打造“下一代个人与组织的 Ai 工作站”,能够帮助用户“一分钟一键生成 PPT”,是国内 AiPPT 赛道创业公司第 1 的产品,全球第 4,国内所有 AIGC 产品 PC 端 Top10。目标市场包括市场、运营、销售、人力、财务、行政、技术、产品、总助、公务员、学生、老师等基层及中高层管理岗位人员。 增强版 Bot 作为基于 AI 驱动的智能创作平台,可以实现一站式内容生成,包括 PPT 一键生成。用户在对话框输入诉求,如“帮我生成一篇包含以上架构风格的完整 PPT”,即可生成幻灯片内容及相关模板选择。 此外,2024 年 6 月 22 日更新的研究报告中,《》提到 AiPPT 是爱设计推出的 AI 大模型与 PPT 场景深度结合的产品,能够实现一键生成专业 PPT,并提供丰富模板和低创作门槛。
2025-03-05
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
ai大模型和工具组合使用技巧
以下是关于 AI 大模型和工具组合使用的技巧: 1. 在 Obsidian 中的使用: 简单方法:通过命令面板打开创建的页面(默认快捷键 Ctrl+P),在弹出的搜索框中输入插件名称(如 custom frames),选择 OpenKimi 并打开设置好的窗口。 进阶配置:包括笔记仓库嵌入大模型(Copilot)、笔记内容作为 RAG 嵌入大模型(Smart Conections)、笔记内使用大模型编写内容。 2. 利用大模型与工具的典型例子:如使用 Kimi Chat 查询问题时,它会在互联网上检索相关内容并总结分析给出结论,同时还有很多不同领域类型的工具为大模型在获取、处理、呈现信息上做补充。 3. Agentic Workflow 方面: Agent 通过自行规划任务执行的工作流路径,面向简单或线性流程的运行。 多 Agent 协作:吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。 AI Agent 基本框架:OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演“大脑”,规划包括子目标分解、反思与改进。 4. 从提示词优化到底层能力提升: 任务拆解:将复杂任务的提示词拆解成若干步骤的智能体,每个智能体负责特定子任务。 工作流构建:组合多个提示词或 AI 工具搭建高频重复工作的工作流。 创作场景的灵活应用:在创作过程中使用简单提示词和连续追问调整大模型回答。 深度思考辅助:将大模型用于辅助深度思考,从居高临下的指挥变为伙伴式的协作和相互学习,关注利用大模型训练和增强认知能力。
2025-03-26
我是ai视频入门新手,我该如何从零学习可使用的工具组合与降低工作流程
对于 AI 视频入门新手,从零学习可用的工具组合与降低工作流程,您可以参考以下内容: 工具组合方面: Runway:在真实影像方面质感较好,战争片全景镜头处理出色,控件体验感不错,但存在爱变色、光影不稳定的问题。 SVD:在风景片测试中表现较好,其他方面一般。 Pixverse:擅长物体滑行运动。 Pika:在生成人物表情自然的画面方面表现出色,可用于局部重绘。 11labs:用于制作 AI 声音,英文效果较好,但存在声音没有情绪和情感的问题。 MJ:局部重绘功能强大。 ComfyUI:可进行高清放大和细节增强。 可灵:图生视频效果质量高且稳定,但贵且慢。 Pika 2.2 版本:在首尾帧过渡上有不错表现。 Pixverse:生成速度最快的视频生成平台。 工作流程方面: 1. 分析小说内容:使用如 ChatGPT 等 AI 工具提取关键场景、角色和情节。 2. 生成角色与场景描述:借助如 Stable Diffusion 或 Midjourney 等工具生成视觉描述。 3. 图像生成:使用 AI 图像生成工具创建角色和场景图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成脚本。 5. AI 声音制作:利用如 11labs 等工具将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用如剪映等视频编辑软件将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,提高视频质量。 8. 审阅与调整:观看视频,根据需要重新编辑某些场景或调整音频。 9. 输出与分享:完成编辑后,输出最终视频并在所需平台分享。 需要注意的是,具体的操作步骤和所需工具可能因项目需求和个人偏好有所不同。同时,AI 工具的可用性和功能可能会随时间变化,建议直接访问工具网址获取最新信息和使用指南。
2025-03-24
生产爆款内容视频可以用哪些AI工具组合
以下是一些可用于生产爆款内容视频的 AI 工具组合及相关流程: 工具组合: 1. Pika、Pixverse、Runway、SVD:可用于生成各种类型视频的画面,如剧情片、科幻片、战争片、奇幻片等。 2. ChatGPT:用于生成视频脚本、筛选背景音乐等。 3. Stable Diffusion 或 Midjourney:生成角色和场景的视觉描述。 4. Adobe Firefly:将小说文本转换为语音,添加背景音乐和音效。 5. Clipfly 或 VEED.IO:进行视频编辑与合成。 制作流程: 1. 对于已有小说,使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 将提取的关键点和生成的图像组合成视频脚本。 5. 利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-02-08
nova有个图生视频的功能,但是只能生成6秒钟,我要如何组合服务去实现可以文生长视频并且也可以图生长视频呢
以下是一些实现文生长视频和图生长视频的方法: 1. 使用 PixVerse V2 模型: 单个视频生成(8s):8s 的视频生成需要花费 30 Credits,5s 的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. 利用 runway: 视频的大部分片段用 runway(https://app.runwayml.com/)制作,少数的片段用的是即梦(https://jimeng.jianying.com/aitool/home)的动效画板和首尾帧。 以汽车内饰这一片段为例,登录 runway 账户后,在首页的左侧点击“Text/Imagine to Video”,中文即是“文生视频/图生视频”。点击 2 处将汽车内饰的图片上传到 runway 中。其中 1 处可以更改生成图片所用到的大模型版本,数字越大代表模型越强。目前只有 Gen2 每天有免费额度。3 处用于输入提示词。4 处可以修改生成的视频时长为 5s 或 10s,时长越长,生成的效果可能越不稳定。5 处可以看到生成的结果。提示词方框中输入的运镜方式“Roll Clockwise Shot slowly”是,即摄像机围绕垂直轴顺时针旋转,常用于创造动态的、有时令人眩晕的视觉效果。不想动脑的话,每个片段的运镜方式根据分镜表的建议来即可。运镜提示词该如何填写呢?可以参照:。runway 对于这些专有的运镜方式理解的很好。其他的提示词可以不填,先看看效果,如果效果不好,再补充简短的提示词重新生成视频。很多时候提示词过多,生成的视频就很怪异,像吃了毒蘑菇后看到的幻觉一样。改变提示词,改变生成时长,多抽卡几次,毕竟 runway 会员可以无限抽卡。 3. 海外产品 viva: viva 发布了首个开放给全部用户使用的 Sora 同架构视频生成模型,而且现阶段免费。支持文本生成视频、图片生成视频以及 4K 分辨率放大功能,另外也支持提示词的自动优化。文生视频单次可以生成一条 5 秒的视频,图生视频是 4 秒视频。
2024-12-19
常用的prompt的自动化词条组合有哪些?
以下是一些常用的 prompt 自动化词条组合: 1. 情境:这是一个基础的提示词框架,可作为入手选择。 2. 对于 Dynamic Prompts 插件,魔法提示词能自动生成补充,如勾选魔法提示词并设置相关参数,包括创意度、模型选择等。以 MagicPrompt 模型为例,能根据输入的关键词生成丰富的补充内容。 3. 在 Prompt 的基础篇中,每个单独的提示词叫 tag(关键词),支持英语及 emoji 。语法规则包括用英文半角逗号分隔 tag ,改变 tag 权重有两种写法,还能进行 tag 的步数控制。 如果您觉得这些例子过于复杂,可结合自身生活或工作场景,如自动给班级孩子起昵称、排版微信群运营文案、安排减脂餐、列学习计划、设计商务会议调研问卷等,来思考能帮助简单自动化的场景。
2024-10-18
AI能给数字组合排序吗
是的,AI可以对数字组合进行排序。排序是一项基本的计算机科学任务,可以通过多种算法实现。以下是几种常用的排序算法,以及如何利用AI和编程语言实现这些排序任务: 常见排序算法 1. 冒泡排序(Bubble Sort) 描述:比较相邻的元素,如果它们的顺序错误就交换,直到列表有序。 时间复杂度:O 2. 选择排序(Selection Sort) 描述:找到列表中最小的元素并将其放在已排序部分的末尾,重复该过程。 时间复杂度:O 3. 插入排序(Insertion Sort) 描述:逐步构建有序序列,对于未排序部分中的每个元素,将其插入到已排序部分的正确位置。 时间复杂度:O 4. 快速排序(Quick Sort) 描述:选择一个基准元素,将列表分成小于基准和大于基准的两部分,然后递归地对这两部分进行排序。 时间复杂度:O 5. 归并排序(Merge Sort) 描述:将列表分成两半,递归地排序这两半,然后合并排序后的两半。 时间复杂度:O 使用Python实现排序 可以使用Python中的排序函数`sorted`,也可以自己实现上述算法。以下是一些示例: 使用内置函数 ```python 使用sorted函数 numbers = sorted_numbers = sorted print 使用list.sort方法 numbers.sort print ``` 实现快速排序 ```python def quicksort: if len <= 1: return arr pivot = arr left = middle = right = return quicksort numbers = sorted_numbers = quicksort print ``` 使用AI排序 AI可以通过实现或优化排序算法,尤其是在处理大型数据集或特定排序需求时。深度学习和机器学习模型通常不会直接用于排序,但在某些复杂情况下,AI可以辅助排序任务,例如优化排序算法或处理带有特定特征的数据。 示例:TensorFlow排序 虽然深度学习框架如TensorFlow和PyTorch主要用于复杂的数据处理和模型训练,但也可以用于实现排序任务。以下是一个简单的TensorFlow排序示例: ```python import tensorflow as tf @tf.function def bubble_sort: n = tf.shape for i in tf.range: for j in tf.range: if arr: temp = arr arr arr = temp return arr numbers = tf.constant sorted_numbers = bubble_sort print ``` 以上是一些示例和方法,展示了如何使用AI和常规编程技术来对数字组合进行排序。选择合适的方法取决于具体的应用场景和需求。
2024-05-30