Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

常用的prompt的自动化词条组合有哪些?

Answer

以下是一些常用的 prompt 自动化词条组合:

  1. 情境(Situation):任务(Task):行动(Action):结果(Result):这是一个基础的提示词框架,可作为入手选择。
  2. 对于 Dynamic Prompts 插件,魔法提示词能自动生成补充,如勾选魔法提示词并设置相关参数,包括创意度、模型选择等。以 MagicPrompt 模型为例,能根据输入的关键词生成丰富的补充内容。
  3. 在 Prompt 的基础篇中,每个单独的提示词叫 tag(关键词),支持英语及 emoji 。语法规则包括用英文半角逗号分隔 tag ,改变 tag 权重有两种写法,还能进行 tag 的步数控制。

如果您觉得这些例子过于复杂,可结合自身生活或工作场景,如自动给班级孩子起昵称、排版微信群运营文案、安排减脂餐、列学习计划、设计商务会议调研问卷等,来思考能帮助简单自动化的场景。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:Prompt 喂饭级系列教程 小白学习指南(二)

[title]小七姐:Prompt喂饭级系列教程小白学习指南(二)于是这个提示词解决了你自己,和任何收到你Prompt的人微调几个关键信息就能自动让GPT或者Kimi帮你阅读一篇论文而且生成不错的总结啦!如果你觉得这些例子对你来说还是过于复杂了,请你结合你自己的生活或者工作场景来想一个能帮你简单自动化的场景:自动给班级里的每个孩子起个昵称?自动排版你微信群经常发的一些运营小文案?自动帮你安排周一到周日的减脂餐?帮你列一个清晰的学习计划,day1-day7?帮你的下一次商务会议设计一个调研问卷?……第三步、选一个好上手的提示词框架来帮你开启你第一次有效的编写如果你这时候问什么是提示词框架,那说明你第一课没认真学,回去复习吧。对框架的理解和运用是非常重要的一部分,参考上图,来源:[prompt-engineering/prompt-patterns:Prompt编写模式:如何将思维框架赋予机器,以设计模式的形式来思考prompt(](https://github.com/prompt-engineering/prompt-patterns)[github.com](http://github.com)[)](https://github.com/prompt-engineering/prompt-patterns)提示词框架有很多,有的简单有的复杂,你可以选一个看起来不那么难的先入手,比如可以从非常基础的:情境(Situation):任务(Task):行动(Action):结果(Result):开始。如果你拿到我给你的这个由四个词语组成的提示词框架还是觉得无从下手,你可以试试这样:恭喜你,就在刚才你已经写出你的第一个提示词了,它是:

Dynamic Prompts插件,魔法提示词由魔法帮你补全(插件篇)

[title]Dynamic Prompts插件,魔法提示词由魔法帮你补全(插件篇)[heading1]魔法关键词如果说前面分离生成,组合生成可以手动操作,不算特别常用的话,这部分就是本篇的重点了。因为被称为魔法的关键词也能用别的魔法自动生成补充了。勾选上魔法提示词,加到多少个词自己设。创意度可以理解就是与原提示词的贴切程度,进行过图生图的也好理解。前面说的下模型在这里就需要选择提示词的模型了,一般选中后都会后台下载,每个大概800m,因为安装了路径很蛋疼,这里我就不提供手动下载的方式了。可以通过上面的url去详细了解其他的prompt模型。以MagicPrompt模型为例(官方说这个模型Lexica.art那训练8000个关键词。举例"dogs playing football":dogs playing football,in the streets of a japanese town at night,with people watching in wonder,in the style of studio ghibli and makoto shinkai,highly detailed digital art,trending on artstationdogs playing football,in the background is a nuclear explosion.photorealism.hq.hyper.realistic.4 k.award winning.dogs playing football,in the background is a nuclear explosion.photorealistic.realism.4 k wideshot.cinematic.unreal engine.artgerm.marc simonetti.jc leyendecker其他设置,包括不希望出现的prompt,赋予prompt权重也都很好理解。需要注意的是如果你只是在找寻灵感,目标不明确,可以勾选“手气不错”(I'm feeling lucky)会得到一些让人意外的图片。那么,我们实际跑一下看?<br>|关键词1girl,school uniform,white shirt with blue collars,blue shorts,dynamic posture,|通过动态提示词,我们得到了若干组魔法补充后的提示词,如果勾选“手气不错”还有更多意想不到的结果哟。

Prompt的专场教程-基础篇

一段指令,用于指挥AI生成你所需要的内容,每个单独的提示词叫tag(关键词)。[heading2]支持的语言[content]支持的语言为英语(不用担心英语不好的问题,[点击蓝字进入提示词字典](https://ops.jk.cm/#/apps/ops/))另外注意emoji也可以用的?,好赞?,但是我不造用了emoji可以有什么好处hhh。[heading2]语法规则[content]1.用英文半角符号逗号,来分隔tag。注意逗号前后有空格或者换行都不影响效果,示例见下方代码块2.改变tag权重:注意tag的顺序越靠前对于SD来说权重越大,但是依旧可以给每个位置上的tag单独设置权重。而且还有两种写法。2.1.(tag:权重数值):数值从0.1~100,默认状态是1,低于1就是减弱,大于1就是加强2.2.(…(tag)…)/[…[tag]…]:每加一层()括号,权重就重1.1倍,每加一层[]括号就反向减弱1.1倍.比如说括号加两层是1.1*1.1=1.21倍,三层是1.331倍……示例见下方代码块,两种方法都可以用,第一种清晰明确,第二种方便快捷。3.进行tagde步数控制(高级玩法,快试一试,可以秀了):就是SD先按你输入的这个tag1开始生成,然后在达到你设定的步数之后,tag1停止产生作用,此时tag2再参与到对内容生成的影响。[tag1:tag2:数字],数字大于1理解为第X步前为tag1,第X步后变成tag2,数字小于1理解为总步数的百分之X前为tag1,之后变成tag2,示例见下方代码,代码块的#后为注释。注意这两种方法各有优劣,建议按需灵活调用。

Others are asking
PromptEnhancer
以下是关于 PromptEnhancer 的相关信息: PromptEnhancer 是一款自动生成/优化 prompt 的工具。 在对最流行的“AI 提示生成器”的比较分析中,针对“作为一名 IT 学生,为我的高级项目提出想法;我想要关于学生帮助大学学生的想法”这一测试种子提示,PromptEnhancer 在实验中的成绩为 4 胜 0 负。 相关链接:https://flowgpt.com/prompt/sbuYQwUq_8v8fafR5zJuB
2025-04-20
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
整理会议纪要的prompt
以下是一些关于整理会议纪要的 prompt: 【?会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼。 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 CEO 秘书会议纪要:专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。需严格遵守信息准确性,不对用户提供的信息做扩写,仅做信息整理,将一些明显的病句做微调。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
有什么 prompt engineering 的好材料
以下是一些关于 prompt engineering 的好材料: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: Claude 3.7 核心提示词相关: 您可以在中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 一泽 Eze 整理的相关学习资料: Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library 基本概念: 简单的提示词可以包含指令、问题等信息,也可以包含上下文、输入或示例等详细信息,以更好地指导模型获得更好的结果。 当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同的角色来构建 prompt,system 有助于设定 assistant 的整体行为。 提示工程就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。
2025-04-12
我想通过在sciencedirect上输入关键词后,让AI帮助我整理该词条下文献的内容,输出当今的研究现状、现存问题、解决方法
目前在 ScienceDirect 上,还没有直接通过输入关键词让 AI 为您整理文献内容并输出研究现状、现存问题及解决方法的成熟功能。但您可以利用一些 AI 工具,如文献分析类的软件,先将从 ScienceDirect 下载的文献导入其中,然后让其协助您进行分析和总结。不过,在使用任何工具时,都需要您自己对结果进行评估和筛选,以确保准确性和可靠性。
2025-02-25
如何了解AI的基本概念,是否有词条清单
以下是帮助您了解 AI 基本概念的一些途径和内容: 阅读相关资料:建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的主要分支和它们之间的联系。 浏览入门文章:这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 学习数学基础:包括统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 了解算法和模型:监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习(简介强化学习的基本概念)。 掌握评估和调优知识:如性能评估(包括交叉验证、精确度、召回率等)、模型调优(学习如何使用网格搜索等技术优化模型参数)。 您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。同时,AI 领域广泛,您可以根据自己的兴趣选择特定的模块(比如图像、音乐、视频等)进行深入学习。
2024-09-12
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
自动化控制电脑
以下是关于自动化控制电脑的相关信息: Google 正在开发名为“Project Jarvis”的 AI 项目,预计年底亮相。该项目旨在实现 AI 自动化操作 Chrome 浏览器中的任务,借助升级版 Gemini 2.0。“Jarvis”作为 Chrome 扩展短暂曝光,可作为上网伴侣,帮助用户完成自动化任务,通过截图分析屏幕内容,使用 Gemini 2.0 模型决定执行操作,例如预订餐厅或下单,预计将在 Gemini 2.0 发布后上线,可能在下个月。 目前没有更多关于自动化控制电脑的其他详细内容。
2025-04-10
自动化
以下是关于自动化的相关内容: Python 在自动化方面的应用: Python 以其简洁语法和强大库支持,成为自动化任务的首选语言之一。 办公软件自动化: Pythondocx 用于创建、修改和提取 Word 文档。 Openpyxl 或 xlsxwriter 用于操作 Excel 文件。 Pythonpptx 用于创建和修改 PowerPoint 演示文稿。 PyPDF2 用于分割、合并、裁剪和转换 PDF 文件,还能添加自定义数据、查看选项和密码,以及检索文本和元数据。 爬虫: Requests 用于发送 HTTP 请求,适合网络请求自动化。 Selenium 用于自动化 Web 浏览器交互,模拟用户行为。 BeautifulSoup 和 lxml 用于解析 HTML 和 XML 文档,提取网页数据。 测试自动化: Unittest 和 pytest 支持自动化测试。 容器与虚拟化自动化: Dockerpy 用于自动化 Docker 容器的创建和管理。 HR 政策海报生成的自动化工作流: 通过飞书和扣子的结合配置工作流,实现 HR 政策海报的自动化生成。但为保证质量,不建议完全自动化,生成内容最好有人把关。还可进一步配置机器人定时执行工作流,并将海报发送到指定群聊,实现端到端的自动化。 新工业革命中的自动化: 在生物制药和医疗保健等领域,机器可以学习并复制人的专业知识,实现规模扩展。自动化和机器人技术实现了规模,并解决了“未工业化”生物学的最大弱点,使生物技术能够大规模扩展。
2025-04-10
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
普通人想学习AI自动化,make和coze哪个更推荐一点
对于普通人学习 AI 自动化,Make 和 Coze 哪个更适合的问题,以下是一些相关信息供您参考: Make 对于编程小白比较友好,其思考过程较长,有助于学习,但不太适合专业选手,因为思考过程较慢,可能会让人有点不耐烦。Make 具有国内版优势,包括深度理解中国开发场景和技术生态、完全免费、无需翻墙、流畅稳定,还具备完整的 IDE 功能(代码编写、项目管理、插件管理、源代码管理等)。您可以通过进行尝试。 Coze 是一款 AI Agent 的衍生产品,其价值在于可以跟进当前 AI Agent 工具的发展情况,发现商业化机会,还能用于做产品 Demo。在学习新知识如 RAG 时,可以先通过 Claude 了解细节概念,再通过 Coze 搭建 Demo 进行实践。在学习 RAG 过程中,还可以利用 Coze 的知识库能力创建如产品资料问答机器人等 Bot。 总的来说,如果您是编程小白,Make 可能更适合;如果您希望跟进 AI 工具发展并进行实践操作,Coze 可能更符合您的需求。但最终的选择还需根据您的具体学习目标和个人偏好来决定。
2025-04-08
AI在非标自动化机构设计上有哪些应用
AI 在非标自动化机构设计上的应用包括以下方面: 1. 智能体应用: 决策智能体设计,使用语言模型遍历预定义的决策树。 轨道智能体,为智能体配备更高层次的目标,限制解决空间,要求遵循标准作业程序并使用预先设定的“工具”库。 通用人工智能体,完全依赖语言模型的推理能力进行所有的计划、反思和纠正。 2. AI 绘画应用: 快速草图,帮助设计师快速创建草图和概念图,便于探索和调整设计方案。 自动化创意设计,快速创建各种设计方案,加快设计过程和减少犯错。 自动化颜色匹配,自动匹配色彩,使设计作品更协调美观。 自动化插图绘制,帮助设计师自动化绘制插图,如手绘、卡通风格插图等。 3. 计算机视觉工具库应用: Roboflow 的开源计算机视觉工具库 Supervision 新增了高级视频分析功能,其开发的自动计数工具能识别物体、追踪姿态并进行动作计数。该工具库是全方位的计算机视觉平台,支持多种注释和图像格式,提供过滤、标签、分割、预处理和增强图像数据的功能,还集成了 OpenAI、Meta AI 等的模型,并提供一系列工具来组织视觉数据、自动化标签和部署基础模型。
2025-03-31
ai大模型和工具组合使用技巧
以下是关于 AI 大模型和工具组合使用的技巧: 1. 在 Obsidian 中的使用: 简单方法:通过命令面板打开创建的页面(默认快捷键 Ctrl+P),在弹出的搜索框中输入插件名称(如 custom frames),选择 OpenKimi 并打开设置好的窗口。 进阶配置:包括笔记仓库嵌入大模型(Copilot)、笔记内容作为 RAG 嵌入大模型(Smart Conections)、笔记内使用大模型编写内容。 2. 利用大模型与工具的典型例子:如使用 Kimi Chat 查询问题时,它会在互联网上检索相关内容并总结分析给出结论,同时还有很多不同领域类型的工具为大模型在获取、处理、呈现信息上做补充。 3. Agentic Workflow 方面: Agent 通过自行规划任务执行的工作流路径,面向简单或线性流程的运行。 多 Agent 协作:吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。 AI Agent 基本框架:OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演“大脑”,规划包括子目标分解、反思与改进。 4. 从提示词优化到底层能力提升: 任务拆解:将复杂任务的提示词拆解成若干步骤的智能体,每个智能体负责特定子任务。 工作流构建:组合多个提示词或 AI 工具搭建高频重复工作的工作流。 创作场景的灵活应用:在创作过程中使用简单提示词和连续追问调整大模型回答。 深度思考辅助:将大模型用于辅助深度思考,从居高临下的指挥变为伙伴式的协作和相互学习,关注利用大模型训练和增强认知能力。
2025-03-26
我是ai视频入门新手,我该如何从零学习可使用的工具组合与降低工作流程
对于 AI 视频入门新手,从零学习可用的工具组合与降低工作流程,您可以参考以下内容: 工具组合方面: Runway:在真实影像方面质感较好,战争片全景镜头处理出色,控件体验感不错,但存在爱变色、光影不稳定的问题。 SVD:在风景片测试中表现较好,其他方面一般。 Pixverse:擅长物体滑行运动。 Pika:在生成人物表情自然的画面方面表现出色,可用于局部重绘。 11labs:用于制作 AI 声音,英文效果较好,但存在声音没有情绪和情感的问题。 MJ:局部重绘功能强大。 ComfyUI:可进行高清放大和细节增强。 可灵:图生视频效果质量高且稳定,但贵且慢。 Pika 2.2 版本:在首尾帧过渡上有不错表现。 Pixverse:生成速度最快的视频生成平台。 工作流程方面: 1. 分析小说内容:使用如 ChatGPT 等 AI 工具提取关键场景、角色和情节。 2. 生成角色与场景描述:借助如 Stable Diffusion 或 Midjourney 等工具生成视觉描述。 3. 图像生成:使用 AI 图像生成工具创建角色和场景图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成脚本。 5. AI 声音制作:利用如 11labs 等工具将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用如剪映等视频编辑软件将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,提高视频质量。 8. 审阅与调整:观看视频,根据需要重新编辑某些场景或调整音频。 9. 输出与分享:完成编辑后,输出最终视频并在所需平台分享。 需要注意的是,具体的操作步骤和所需工具可能因项目需求和个人偏好有所不同。同时,AI 工具的可用性和功能可能会随时间变化,建议直接访问工具网址获取最新信息和使用指南。
2025-03-24
生产爆款内容视频可以用哪些AI工具组合
以下是一些可用于生产爆款内容视频的 AI 工具组合及相关流程: 工具组合: 1. Pika、Pixverse、Runway、SVD:可用于生成各种类型视频的画面,如剧情片、科幻片、战争片、奇幻片等。 2. ChatGPT:用于生成视频脚本、筛选背景音乐等。 3. Stable Diffusion 或 Midjourney:生成角色和场景的视觉描述。 4. Adobe Firefly:将小说文本转换为语音,添加背景音乐和音效。 5. Clipfly 或 VEED.IO:进行视频编辑与合成。 制作流程: 1. 对于已有小说,使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 将提取的关键点和生成的图像组合成视频脚本。 5. 利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-02-08
什么样的模型或者工具组合可以实现一键抠图?
以下模型或工具组合可以实现一键抠图: 1. 在 Yeadon 提供的图像流搭建中,智能处理工具包括“智能抠图”,可以帮助快速完成抠图任务。在图像流编辑界面,左侧的工具栏集合了所有可能用到的功能,其中智能处理工具中的“智能抠图”能够一键去除图片背景。 2. 在【SD】相关内容中,虽然主要介绍的是放大算法,但也提到了一些图像处理的相关内容。可以通过相关工具和设置来实现一键抠图的可能。 需要注意的是,具体的实现效果和操作可能因不同的场景和需求而有所差异。
2025-01-20
nova有个图生视频的功能,但是只能生成6秒钟,我要如何组合服务去实现可以文生长视频并且也可以图生长视频呢
以下是一些实现文生长视频和图生长视频的方法: 1. 使用 PixVerse V2 模型: 单个视频生成(8s):8s 的视频生成需要花费 30 Credits,5s 的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. 利用 runway: 视频的大部分片段用 runway(https://app.runwayml.com/)制作,少数的片段用的是即梦(https://jimeng.jianying.com/aitool/home)的动效画板和首尾帧。 以汽车内饰这一片段为例,登录 runway 账户后,在首页的左侧点击“Text/Imagine to Video”,中文即是“文生视频/图生视频”。点击 2 处将汽车内饰的图片上传到 runway 中。其中 1 处可以更改生成图片所用到的大模型版本,数字越大代表模型越强。目前只有 Gen2 每天有免费额度。3 处用于输入提示词。4 处可以修改生成的视频时长为 5s 或 10s,时长越长,生成的效果可能越不稳定。5 处可以看到生成的结果。提示词方框中输入的运镜方式“Roll Clockwise Shot slowly”是,即摄像机围绕垂直轴顺时针旋转,常用于创造动态的、有时令人眩晕的视觉效果。不想动脑的话,每个片段的运镜方式根据分镜表的建议来即可。运镜提示词该如何填写呢?可以参照:。runway 对于这些专有的运镜方式理解的很好。其他的提示词可以不填,先看看效果,如果效果不好,再补充简短的提示词重新生成视频。很多时候提示词过多,生成的视频就很怪异,像吃了毒蘑菇后看到的幻觉一样。改变提示词,改变生成时长,多抽卡几次,毕竟 runway 会员可以无限抽卡。 3. 海外产品 viva: viva 发布了首个开放给全部用户使用的 Sora 同架构视频生成模型,而且现阶段免费。支持文本生成视频、图片生成视频以及 4K 分辨率放大功能,另外也支持提示词的自动优化。文生视频单次可以生成一条 5 秒的视频,图生视频是 4 秒视频。
2024-12-19
AI能给数字组合排序吗
是的,AI可以对数字组合进行排序。排序是一项基本的计算机科学任务,可以通过多种算法实现。以下是几种常用的排序算法,以及如何利用AI和编程语言实现这些排序任务: 常见排序算法 1. 冒泡排序(Bubble Sort) 描述:比较相邻的元素,如果它们的顺序错误就交换,直到列表有序。 时间复杂度:O 2. 选择排序(Selection Sort) 描述:找到列表中最小的元素并将其放在已排序部分的末尾,重复该过程。 时间复杂度:O 3. 插入排序(Insertion Sort) 描述:逐步构建有序序列,对于未排序部分中的每个元素,将其插入到已排序部分的正确位置。 时间复杂度:O 4. 快速排序(Quick Sort) 描述:选择一个基准元素,将列表分成小于基准和大于基准的两部分,然后递归地对这两部分进行排序。 时间复杂度:O 5. 归并排序(Merge Sort) 描述:将列表分成两半,递归地排序这两半,然后合并排序后的两半。 时间复杂度:O 使用Python实现排序 可以使用Python中的排序函数`sorted`,也可以自己实现上述算法。以下是一些示例: 使用内置函数 ```python 使用sorted函数 numbers = sorted_numbers = sorted print 使用list.sort方法 numbers.sort print ``` 实现快速排序 ```python def quicksort: if len <= 1: return arr pivot = arr left = middle = right = return quicksort numbers = sorted_numbers = quicksort print ``` 使用AI排序 AI可以通过实现或优化排序算法,尤其是在处理大型数据集或特定排序需求时。深度学习和机器学习模型通常不会直接用于排序,但在某些复杂情况下,AI可以辅助排序任务,例如优化排序算法或处理带有特定特征的数据。 示例:TensorFlow排序 虽然深度学习框架如TensorFlow和PyTorch主要用于复杂的数据处理和模型训练,但也可以用于实现排序任务。以下是一个简单的TensorFlow排序示例: ```python import tensorflow as tf @tf.function def bubble_sort: n = tf.shape for i in tf.range: for j in tf.range: if arr: temp = arr arr arr = temp return arr numbers = tf.constant sorted_numbers = bubble_sort print ``` 以上是一些示例和方法,展示了如何使用AI和常规编程技术来对数字组合进行排序。选择合适的方法取决于具体的应用场景和需求。
2024-05-30