Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么系统学习llm开发

Answer

学习大型语言模型(LLM)的开发是一个系统性的过程,需要涵盖多个方面的知识和技能。以下是一些建议的学习路径和资源:

  1. 掌握深度学习和自然语言处理基础

    • 机器学习、深度学习、神经网络等基础理论
    • 自然语言处理基础,如词向量、序列模型、注意力机制等
    • 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等
  2. 理解 Transformer 和 BERT 等模型原理

    • Transformer 模型架构及自注意力机制原理
    • BERT 的预训练和微调方法
    • 掌握相关论文,如 Attention is All You Need、BERT 论文等
  3. 学习 LLM 模型训练和微调

    • 大规模文本语料预处理
    • LLM 预训练框架,如 PyTorch、TensorFlow 等
    • 微调 LLM 模型进行特定任务迁移
    • 相关资源: HuggingFace 课程、论文及开源仓库等
  4. LLM 模型优化和部署

    • 模型压缩、蒸馏、并行等优化技术
    • 模型评估和可解释性
    • 模型服务化、在线推理、多语言支持等
    • 相关资源: ONNX、TVM、BentoML 等开源工具
  5. LLM 工程实践和案例学习 - 结合行业场景,进行个性化的 LLM 训练

    • 分析和优化具体 LLM 工程案例
    • 研究 LLM 新模型、新方法的最新进展
  6. 持续跟踪前沿发展动态

    • 关注顶会最新论文、技术博客等资源
    • 参与相关社区交流和项目实践

总的来说,LLM 开发是一个多学科、系统性的领域,需要深入的理论学习和工程实践经验相结合。除了学习基础知识,熟练使用开源框架工具也很关键。保持对前沿动态的跟踪,并实际参与相关项目是获得真知灼见的最佳途径。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
LLM应用可观测性
LLM 应用的可观测性主要体现在以下方面: LangChain:借助 LangSmith 提供更好的日志、可视化、播放和跟踪功能,以便监控和调试 LLM 应用。LangSmith 是基于 Web 的工具,能查看和分析细化到 class 的输入和输出,还提供跟踪功能,用于记录和展示 LLM 应用的执行过程和状态,以及 LLM 的内部信息和统计数据。 Langfuse:为大模型应用提供开源可观测性和分析功能,在可视化界面中可探索和调试复杂的日志和追踪,并使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。 此外,微软(中国)的《面向大模型的新编程范式》报告中也强调了在线监控和可观测性的重要性。
2025-04-11
LLM模型响应时间较长,如何处理超时时间问题
处理 LLM 模型响应时间过长导致的超时问题,可以考虑以下方法: 1. 参数有效调整:这是一种新颖的微调方法,通过仅训练一部分参数来减轻微调 LLM 的挑战。这些参数可能是现有模型参数的子集,或者是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示中。 2. 优化提示设计:采用合适的提示方法,如零样本提示、一次性提示、Fewshot prompting 等。零样本提示是只给出描述任务的提示;一次性提示是让 LLM 执行任务的单个示例;Fewshot prompting 是让 LLM 执行任务的少量示例。同时,可以使用结构化模式设计提示,包含上下文、问题示例及相应答案等组件,以指示模型应如何响应。 3. 避免频繁调整某些参数:尤其是 Top K 和 Top P,不需要经常对其进行调整。 4. 关注模型响应质量:即使有良好的提示设计,模型输出仍可能不稳定,需要持续关注和优化。 5. 考虑成本和时间:微调大型模型可能耗时且成本高,为大模型提供服务也可能涉及额外麻烦和成本,需要综合评估和优化。
2025-04-11
除了LLM,就没有AI模型了吗?
除了 LLM ,还有很多其他类型的 AI 模型。以下为您详细介绍: 1. 生成式 AI:可以生成文本、图片、音频、视频等内容形式。其中生成图像的扩散模型就不是大语言模型。 2. 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 3. 深度学习:一种参照人脑有神经网络和神经元的方法(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。 4. 谷歌的 BERT 模型:可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。生成式 AI 生成的内容,叫做 AIGC 。
2025-04-11
linux下安装 anythingLLM
以下是在 Linux 下安装 AnythingLLM 的相关指导: 1. 安装地址:https://useanything.com/download 。 2. 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 4. 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中,也有关于 AnythingLLM 的介绍: 是一个可打造成企业内部知识库的私人专属 GPT!可以将任何文档、资源或内容转换为大语言模型(LLM)知识库,使得在对话过程中可引用到里面的内容。 本文的思路来源于视频号博主黄益贺,作者按照他的视频进行了实操,并附加了一些关于 RAG 的额外知识。
2025-03-27
anythingLLM本地部署
以下是关于本地部署大模型以及搭建个人知识库的相关内容: 一、引言 作者是大圣,一个致力于使用 AI 工具将自己打造为超级个体的程序员,目前沉浸于 AI Agent 研究。本文将分享如何部署本地大模型及搭建个人知识库,读完可学习到如何使用 Ollama 一键部署本地大模型、了解 ChatGPT 信息流转、RAG 概念及核心技术、通过 AnythingLLM 搭建本地化数据库等。 五、本地知识库进阶 如果想要对知识库进行更灵活掌控,需要额外软件 AnythingLLM,它包含所有 Open WebUI 能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: AnythingLLM 中有 Workspace 概念,可创建独有 Workspace 与其他项目数据隔离。 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式,提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档数据给出答案)。 配置完成后可进行测试对话。 六、写在最后 作者推崇“看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可联系作者或加其免费知识星球(备注 AGI 知识库)。 本文思路来源于视频号博主黄益贺,作者按照其视频进行实操并附加了一些关于 RAG 的额外知识。
2025-03-26
LLM的原理
LLM(大语言模型)的工作原理如下: 以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息作为输入给到下一个 Attention 层,层与层之间,哪些信息补充、保留、传递,由模型自主学习,最终模型把海量数据以关系网形式“消化”并保留重要相关性。 形象地说,就像人阅读文章时的连贯性注意力过程,在阅读理解时,脑子里会消化吸收记忆,记忆的不是点状知识,而是网状经验。 大模型以词向量和 Transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 观察大模型回复,是一个字一个字流式输出的,因为大模型确实在一个字一个字地推理生成内容。比如输入法输入联想,根据输入的单个字推测下一个字,加入上下文能帮助模型理解下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易被不相干信息干扰,此时词向量机制和 Transformer 模型中的 Attention 自注意力机制解决了难题。 另外,RAG 对大语言模型的作用就像开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,分为参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。
2025-03-25
学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
学习ai思路,完整步骤流程
以下是新手学习 AI 的完整步骤流程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,以“Windsurf 零基础开发”为例,AI 开发网站的操作步骤如下: 1. 开发目标:以“Windsurf 学习共创社区”为例,借助 AI 能力快速构建现代化 Web 应用。 2. 技术选型:Vue + TypeScript。 3. 目标用户:零基础开发学习者。 4. 参考项目:Cursor101。 5. 开发流程: 需求分析与代码生成。 环境配置自动化。 问题诊断与修复。 界面优化与细节打磨。 功能迭代与完善。 在开发过程中,输入需求让 windsurf 进行 code,它会将开发思路讲解并给出环境命令,可能会出现报错,将报错信息返回给 cascade,经过自动检查后修复 bug,不断优化细节,如优化导航栏和首页,插入细节图片等。
2025-04-14
stable video diffusion开发
以下是关于 Stable Video Diffusion 开发的相关信息: SVD 介绍: 简介:Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。它支持多种功能,用户可调整多种参数,但对硬件要求较高,支持的图片尺寸较小,应用场景受限。 模型版本:开源了两种图生视频的模型,一种能生成 14 帧的 SVD,另一种是可以生成 25 帧的 SVDXL,发布时通过外部评估超越了人类偏好研究中领先的封闭模型。 主要贡献:提出系统的数据管理工作流程,将大量未经管理的视频集合转变为高质量数据集;训练出性能优于现有模型的文本到视频和图像到视频模型;通过特定领域实验探索模型中运动和 3D 理解的强先验,预训练的视频扩散模型可转变为强大的多视图生成器,有助于克服 3D 领域数据稀缺问题。 部署实战避坑指南: 直接使用百度网盘里准备好的资源,可规避 90%的坑。 若一直报显存溢出问题,可调低帧数或增加 novram 启动参数。 云部署实战中,基础依赖模型权重有两个 models–laion–CLIPViTH14laion2Bs32Bb79K 和 ViTL14.pt,需放到指定路径下。 总结: Sora 发布后,此前的视频生成模型相形见绌,但 Stable Video Diffusion 作为开源项目可在自己机器上自由创作无需充值。SVD 生成的视频画质清晰,帧与帧过渡自然,能解决背景闪烁和人物一致性问题,虽目前最多生成 4 秒视频,与 Sora 的 60 秒差距大,但在不断迭代。我们会持续关注其技术及前沿视频生成技术,尝试不同部署微调方式,介绍更多技术模型,更多精彩内容后续放出。 同时,您还可以加入「AIGCmagic 社区」群聊交流讨论,涉及 AI 视频、AI 绘画、Sora 技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
runway的开发公司
Runway 是由一家总部位于旧金山的 AI 创业公司开发的。其在 2023 年初推出的 Gen2 代表了当前 AI 视频领域最前沿的模型。目前 Runway 支持在网页(https://runwayml.com/ )、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105s 视频),iOS 则有 200 多,两端额度貌似并不同步。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
我是一个前端开发人员,在工作中,我可以使用哪些ai工具提效
以下是一些适合前端开发人员在工作中提效的 AI 工具: 1. 辅助编程工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的代码编写助手,借助强大的代码语义索引和分析能力。 CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手。 Codeium:通过提供代码建议等帮助提高编程效率和准确性。 更多辅助编程 AI 产品,可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 测试用例生成:AI 在生成测试用例方面具有显著优势,能自动化和智能化生成高覆盖率的测试用例,减少人工编写时间和成本。通过合理应用 AI 工具,可提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 3. 网页原型图生成工具: 即时设计:https://js.design/ ,可在线使用的「专业 UI 设计工具」,注重云端文件管理和团队协作。 V0.dev:https://v0.dev/ ,Vercel Labs 推出的 AI 生成式用户界面系统,能通过文本或图像生成代码化的用户界面。 Wix: ,用户友好,无需编码知识即可创建和自定义网站,提供广泛模板和设计选择,以及多种功能。 Dora:https://www.dora.run/ ,通过一个 prompt,借助 AI 3D 动画生成强大网站。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-14
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
我是医科大学的本科学生,我现在想用Ai帮助我书写论文和报告,我应该怎么系统学习?
以下是一些系统学习利用 AI 帮助书写论文和报告的建议: 一、了解常用的 AI 工具和平台 1. 文献管理和搜索 Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作 Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析 Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式 LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测 Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 二、学习使用 AI 辅助撰写论文和报告的方法 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。 三、注意事项 1. AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 保持科学的态度和方法,遵循科学伦理原则。 3. 了解现阶段 AI 在教育领域应用的局限性,如知识适配的层次性问题、教育应用的安全性考量等。 希望以上内容对您有所帮助。
2025-04-14
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
如果我想要系统学习coze,我应该怎么安排?
如果您想要系统学习 Coze,可以参考以下安排: 第一期共学回放 5 月 7 号() 大聪明分享|主题:Agent 的前世今生 每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么 20:00@?AJ 主持开场 20:00 21:00 大聪明分享 21:00 21:30 关于 Coze 随便聊聊 5 月 8 号() 大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze 20:00 21:20 大圣分享 5 月 9 号() 艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例 20:00 21:00 艾木分享 21:00 21:30 线上答疑 5 月 10 号() 罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书 20:00 21:00 罗文分享 5 月 11 号() Itao 分享|主题:和 AI 成为搭子 20:00 21:00 Itao 分享 21:00 21:30 线上答疑 Agent 搭建共学快闪 0619 日程安排 6 月 19 日 20:00 开始 从零到一,搭建微信机器人 0 基础小白 张梦飞 小元 金永勋、奥伏 6 月 20 日 20:00 开始 Coze 接入、构建你的智能微信助手 完成第一课 张梦飞 吕昭波 安仔、阿飞 6 月 23 日 20:00 开始 微信机器人插件拓展教学 完成第一课 张梦飞 安仔 大雨 空心菜、AYBIAO、阿飞 6 月 24 日 20:00 开始 虚拟女友“李洛云”开发者自述 完成第一课 皮皮 安仔 6 月 25 日 20:00 开始 FastGPT:“本地版 coze"部署教学 完成第一课 张梦飞 银海 金永勋、AYBIAO 6 月 27 日 20:00 开始 Hook 机制的机器人使用和部署教学 0 基础小白,一台 Windows 10 以上系统的电脑 张梦飞 Stuart 阿飞、空心菜
2025-04-14
有没有关于AI生成ppt的系统性教学
以下是关于 AI 生成 PPT 的系统性教学: 背景: 作者熊猫 Jay 因企业内部要求编写此文章并公开分享,旨在帮助不同水平的用户,包括 PPT 专家和新手,通过 AI 工具更高效地制作 PPT,满足不同需求,提高工作效率。 主要内容: 介绍了市面上最受欢迎的 5 款 AI PPT 工具,包括 MindShow、爱设计、闪击、Process ON、WPS AI。每款工具都有独特优势,能助用户快速、高效完成 PPT 设计。 总结: AI 介入 PPT 工具带来便捷高效体验,文中核心章节为 AI 生成 PPT 的主要思路。不同工具适合不同人群,应根据实际需求选择,试用和体验比盲目跟风更明智。在 AI 时代,它是办公革新和思维升级的体现。 提示词及相关索引: 作者联系方式: 公众号:熊猫 Jay 字节之旅;免费星球:熊猫 Jay·AI·成长,欢迎关注。
2025-04-09
我想要系统学习ai大模型应用开发,能帮我制定一个系统学习路线吗?
以下是一个系统学习 AI 大模型应用开发的学习路线: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 研读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 7. 参与相关社区交流和项目实践: 总的来说,AI 大模型应用开发是一个多学科、系统性的领域,需要深入的理论学习和工程实践经验相结合。除了学习基础知识,熟练使用开源框架工具也很关键。保持对前沿动态的跟踪,并实际参与相关项目是获得真知灼见的最佳途径。 此外,以下是一个利用 AI+SMART 安排学习计划的案例: 学习目标与个人或职业发展目标的关系:平时工作中需要经常阅读英文文档。另外,有朋友和客户是英文母语者,想要和他们沟通更加顺畅。其次,希望未来有机会进入大型外企工作。 具体学习内容:首先是词汇需要提高,其次听力、口语、阅读和写作这些方面都进行全面提高。 量化学习进度和成功:以考取雅思 8.0,且可以和朋友或客户流利的交谈为目标。 时间框架:半年内。 现实可行性:目前雅思 6.5,每天可以投入 2 小时。周末可以更多。有访问网络课程的条件,也可以购买书籍或其他学习材料。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-08