Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

国内有哪些多模态大模型

Answer

国内的多模态大模型有:

  • “悟道・天鹰”(北京智源人工智能研究院):“悟道・天鹰”(Aquila)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。
  • 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。
Content generated by AI large model, please carefully verify (powered by aily)

References

多模态大模型入门指南-长文慎入【持续更新】

(8)InstructBLIP基于预训练的BLIP-2模型进行训练,在MM IT期间仅更新Q-Former。通过引入指令感知的视觉特征提取和相应的指令,该模型使得能够提取灵活多样的特征。(9)PandaGPT是一种开创性的通用模型,能够理解6不同模式的指令并根据指令采取行动:文本、图像/视频、音频、热、深度和惯性测量单位。(10)PaLI-X使用混合VL目标和单峰目标进行训练,包括前缀完成和屏蔽令牌完成。事实证明,这种方法对于下游任务结果和在微调设置中实现帕累托前沿都是有效的。(11)Video-LLaMA张引入了多分支跨模式PT框架,使LLMs能够在与人类对话的同时同时处理给定视频的视觉和音频内容。该框架使视觉与语言以及音频与语言保持一致。(12)视频聊天GPT Maaz等人。(2023)是专门为视频对话设计的模型,能够通过集成时空视觉表示来生成有关视频的讨论。(13)Shikra Chen等人。(2023d)介绍了一种简单且统一的预训练MM-LLM,专为参考对话(涉及图像中区域和对象的讨论的任务)而定制。该模型展示了值得称赞的泛化能力,可以有效处理看不见的设置。(14)DLP提出P-Former来预测理想提示,并在单模态句子数据集上进行训练。这展示了单模态训练增强MM学习的可行性。

2024AIGC法律风险研究报告(更新版).pdf

文本生成(text generation)涉及使用机器学习(machine learning)模型,根据从现有文本数据中学习的模式生成新的文本。用于文本生成的模型可以是马尔科夫链(Markov Chains)、循环神经网络(RNN)、长短时记忆网络(LSTMs),2AIGC法律风险研究报告以及凭借其延长的注意力广度(attention span)而彻底改变了AI领域的Transformer等。文本生成在自然语言处理、聊天机器人和内容创建领域(自动写作、文本摘要)有许多应用。[heading1]一些具有代表性的海外项目:[content]➢GPT-4(OpenAI):目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。➢Gemini Ultra(Google):多模态人工智能模型,采用神经网络架构,对标GPT-4,可用于回答问题、生成代码、处理文本等。➢Claude 3 Opus(Anthropic):多模态模型,能处理超过1百万token的输入,具有实时聊天、数据处理、分析预测等功能;实现了接近完美的召回率。[heading1]一些具有代表性的国内项目:[content]➢“悟道・天鹰”(北京智源人工智能研究院):“悟道・天鹰”(Aquila)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。➢文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。

多模态大模型入门指南-长文慎入【持续更新】

(15)BuboGPT是通过学习共享语义空间构建的模型,用于全面理解MM内容。它探索图像、文本和音频等不同模式之间的细粒度关系。(16)ChatSpot引入了一种简单而有效的方法来微调MM-LLM的精确引用指令,促进细粒度的交互。由图像级和区域级指令组成的精确引用指令的结合增强了多粒度VL任务描述的集成。(17)Qwen-VL是一个多语言MM-LLM,支持英文和中文。Qwen-VL还允许在训练阶段输入多个图像,提高其理解视觉上下文的能力。(18)NExT-GPT是一款端到端、通用的any-to-any MM-LLM,支持图像、视频、音频、文本的自由输入输出。它采用轻量级对齐策略,在编码阶段利用以LLM为中心的对齐方式,在解码阶段利用指令跟随对齐方式。(19)MiniGPT-5郑等人。是一个MM-LLM,集成了生成voken的反演以及与稳定扩散的集成。它擅长为MM生成执行交错VL输出。在训练阶段加入无分类器指导可以提高生成质量。

Others are asking
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
多模态是什么,
多模态指多数据类型交互,能够提供更接近人类感知的场景。大模型对应的模态包括文本、图像、音频、视频等。 随着生成式 AI 和大模型的发展,我们逐渐进入多模态灵活转换的新时代,即能用 AI 实现文本、图像、音频、视频及其他更多模态之间的互相理解和相互转换,这一变革依靠一系列革新性的算法。 在感知不同模态数据时,AI 借助高维向量空间来理解,不再局限于传统的单一模态处理方式,将图像或文字“压缩”成抽象的向量,捕捉深层关系。 Gemini 模型本身就是多模态的,展示了无缝结合跨模态的能力,在识别输入细节、聚合上下文以及在不同模态上应用等方面表现出强大性能。
2025-04-13
多模态Agent最新动态
以下是关于多模态 Agent 的最新动态: 《质朴发言:视觉语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》 近期,生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉语言模型,报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。 从 2022 年 11 月 18 日到 2023 年 7 月 26 日,多模态 Agents 迅速增长。 LLM 多模态 agent 是将现有技术融合的新尝试,是一种集成了多种模态数据处理能力的 AI 技术。 优点:高度的灵活性和扩展性,可根据不同任务需求调用最合适的模型处理任务,适应多样化任务和数据类型,优化资源使用,提升效率;无需训练,系统开发周期快,成本低。 局限性:调试和工程化难度较高,维护和升级成本高;多个组件紧密耦合,单点故障可能导致整个系统风险增加;没有涌现出新的能力。 适用场景:需要综合处理视频、语音和文本等多种信息的复杂环境,如自动驾驶汽车;高度交互和灵活的用户界面,如客户服务机器人或交互式娱乐应用。 《2024 年度 AI 十大趋势报告》 随着大模型对图像和视频信息的处理能力快速提升,预计 2025 年将开始出现更为综合性的多模态交互,AI 能够通过物联网、特定信息等多种感知通道进行协同。 多模态输入和输出使 AI 交互性更强、交互频次更高,适用场景也更加丰富,AI 产品整体水平显著提升。 Agent 作为融合感知、分析、决策和执行能力的智能体,能够根据用户历史行为和偏好,主动提供建议、提醒并个性化执行能力,为用户提供高度个性化的任务。从 2025 年开始,AI Agent 即将广泛投入使用。 从个性化推荐到直接生成个性化内容,AIGC 能够使用户体验的个性化程度有明显提升,这将帮助产品进一步完善用户体验,并通过提高用户忠诚度和迁移成本,实现差异化定价和进一步的服务增值,对产品的差异化竞争有重大意义。目前,基于 AIGC 的高度个性化已经在 AI 教育、AI 陪伴、AI 营销领域有明显进展。在硬件端搭载的多款 AI 智能助手也已开始以高度个性的个人助理作为宣传重点。
2025-03-31
Qwen 多模态模型哪一个最顶?
目前阿里发布的 Qwen 多模态模型中,Qwen2.5VL 较为突出。它可处理长达数小时的视频,并在电脑上执行自动化任务。提供 3B、7B、72B 三种规模,旗舰版对标 GPT4o、Claude 3.5 Sonnet。具备全文档解析能力,支持手写、表格、图表、化学公式等多场景识别,还可操作电脑或手机界面,执行自动化任务,如点击按钮、填表等。详情可参考:https://www.xiaohu.ai/c/xiaohuai/qwen25vl285cee 。此外,Qwen2.5Max 也是阿里通义千问的大型专家模型(MoE),基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。更多体验方式包括支持官方 Chat、API 接口、Hugging Face Demo 等,详情可参考:https://qwenlm.github.io/blog/qwen2.5max/ 、https://chat.qwenlm.ai 、https://alibabacloud.com/help/en/modelstudio/gettingstarted/firstapicalltoqwen?spm=a2c63.p38356.helpmenu2400256.d_0_1_0.1f6574a72ddbKE 、https://huggingface.co/spaces/Qwen/Qwen2.5MaxDemo 。
2025-03-25
如何构建多模态知识库?
构建多模态知识库可以参考以下步骤: 1. 图像知识库方面:通过多模态的能力对图片信息进行检索理解。效果测试时,上传一张图片,在图像数据库里找到相关信息,然后结合内容进行回复。 2. 构建图片索引: 新建结构化数据表时,将图片索引所在列的字段类型设置为 link。需注意新建数据表后,无法再新增或修改字段类型为 link。 创建结构化知识库时,对于需要建立图片索引的 link 类型字段,在旁边的下拉列表中选择图片。创建知识库后,无法再新建或修改图片索引。 3. 多模态知识库还包括构建图片型索引需结构化数据表,字段类型设置为 link,以实现 FAQ 中向用户推送图片信息。
2025-03-19
多模态达模型排行
以下是一些常见的多模态模型排行及相关信息: 1. 智谱·AI 开源模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能基础上具备 GUI 图像的 Agent 能力。代码链接:。 CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩第一,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。代码链接:。 2. Gemini 模型:Gemini Ultra 在表 7 中的各种图像理解基准测试中都是最先进的,在回答自然图像和扫描文档的问题,以及理解信息图表、图表和科学图解等各种任务中表现出强大的性能。在 zeroshot 评估中表现更好,超过了几个专门在基准训练集上进行微调的现有模型,适用于大多数任务。在 MMMU 基准测试中取得了最好的分数,比最先进的结果提高了 5 个百分点以上,并在 6 个学科中的 5 个学科中超过了以前的最佳结果。 3. 多模态思维链提示方法:Zhang 等人(2023)提出了一种多模态思维链提示方法,多模态 CoT 模型(1B)在 ScienceQA 基准测试中的表现优于 GPT3.5。
2025-03-18
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
国内好用的文档排版AI工具
以下是国内一些好用的文档排版 AI 工具: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 3. Latex:虽不是纯粹的 AI 工具,但在学术论文排版方面广泛使用,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 此外,还有一些与文档相关的 AI 工具,如文章润色工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 制作 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-13
目前国内各大ai有排名么
目前国内各大 AI 的排名情况如下: 从用户规模、新增速度、用户活跃和用户粘性等角度进行数据统计,在 APP 端,截至 2024 年 10 月,共 56 款产品的历史下载量超百万,8 款产品历史下载量超千万,夸克和豆包的历史总下载量已过亿。夸克、豆包和 Kimi 智能助手月增长可达到千万级,DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万;用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端,AI 智能助手赛道外的所有赛道都基本处于停滞状态。用户规模方面,月总访问量超千万的共 7 款产品,包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,共 3 款产品——夸克、Notion 和百度文库的 MAU 超过千万,19 款产品 MAU 超过百万。仅有 14 款产品人均每月访问超过 5 次,13 款产品平均访问时长超过 10 分钟。 “量子位智库 AI 100”通过综合 100 和原生 100 两张榜单提名了国内优秀的 AI 产品。 需要注意的是,中国国内的大模型排名可能在短时间内会有变化。要获取最新的排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台。在通往 AGI 之路的知识库里,在会定期更新相关的排名报告,可以供您查阅。
2025-04-12
目前国内各大ai有排名么
目前国内各大 AI 的排名情况如下: 从用户规模、新增速度、用户活跃和用户粘性等角度进行数据统计,在 APP 端,截至 2024 年 10 月,共 56 款产品的历史下载量超百万,8 款产品历史下载量超千万,夸克和豆包的历史总下载量已过亿。夸克、豆包和 Kimi 智能助手月增长可达到千万级,DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万;用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端,AI 智能助手赛道外的所有赛道都基本处于停滞状态。用户规模方面,月总访问量超千万的共 7 款产品,包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,共 3 款产品——夸克、Notion 和百度文库的 MAU 超过千万,19 款产品 MAU 超过百万。仅有 14 款产品人均每月访问超过 5 次,13 款产品平均访问时长超过 10 分钟。 “量子位智库 AI 100”通过综合 100 和原生 100 两张榜单提名了国内优秀的 AI 产品。 需要注意的是,中国国内的大模型排名可能在短时间内会有变化。要获取最新的排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台。在通往 AGI 之路的知识库里,在会定期更新相关的排名报告,可以供您查阅。
2025-04-12
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
在国内如何使用GPT-4O
在国内使用 GPT4 的方法如下: 安卓系统: 1. 安装 Google Play:到小米自带的应用商店搜索 Google Play 进行安装,安装好后打开,按照提示一步步操作登录。 2. 下载安装 ChatGPT:到谷歌商店搜索“ChatGPT”进行下载安装(开发者是 OpenAI,别下错)。可能会遇到“google play 未在您所在的地区提供此应用”的问题,解决方法如下:在 google play 点按右上角的个人资料图标,依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。在这里看到账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。如果回到 Google Play 首页还搜不到 ChatGPT,可以卸载重装 Google Play,操作过程保持梯子的 IP 一直是美,多试几次。 3. 体验 ChatGPT:如果只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录第二部注册好的 ChatGPT 账号即可。 4. 订阅 GPT4 Plus 版本:先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡,然后在 ChatGPT 里订阅 Plus。 苹果系统: 1. 在 Apple Store 下载 ChatGPT:中国区正常下载不了,需要切换到美区才可以下载。美区 Apple ID 注册教程参考如下知乎链接: 。最终在 Apple Store 搜到 ChatGPT 结果如下,下载安装即可,注意别下错。 2. 支付宝 购买苹果礼品卡 充值 订阅付费 App:打开支付宝,地区切换到【美区任意区】,往下滑,找到【品牌精选 折扣礼品卡】,点击进去,可以看到【大牌礼品卡】,往下滑找到【App Store&iTunes US】礼品卡,按需要的金额购买即可,建议先买 20 刀。然后进行以下操作: 支付宝购买礼品卡。 在 apple store 中兑换礼品卡。 在 chatgpt 中购买订阅 gpt plus,如果中途不想继续订阅了,可到订阅列表中取消订阅。 完成上述步骤后,就可以开始使用 ChatGPT 4 了。需要注意的是,在国内使用相关服务可能存在法律风险和技术限制,请谨慎操作。
2025-03-30
国内有什么好的音乐AI可以用即兴哼唱旋律去写歌
以下是国内一些可用即兴哼唱旋律写歌的音乐 AI 相关信息: 《We Are The One》的创作思路: 只有词和意向风格:先确定最核心情绪所在段落,用 AI 生成最佳结果,以此作为动机音轨扩展创作。 只有词和一小段自己哼唱的旋律:上传哼唱旋律,让 AI 扩展出喜欢的风格,作为动机音轨继续创作。 已有 midi 作曲:挂载音源导出,在 AI 帮助下丰满包含主歌、副歌等主要段落的核心音轨,然后继续扩展出其他段落完成全曲创作。 已有简单录音小样:利用 REMIX 优化音质与编曲结构,利用 AI 尝试不同曲风版本,找到最喜欢的风格制作成核心音轨,进而完成全曲创作。 Suno 和 Udio 推出的上传音频文件生成音乐的功能: 精确控制每首歌的速度(Tempo),无需背绕口的速度词,可精确控制想要的 BPM。 控制旋律(Melody),通过自己制作简单旋律让 AI 补全并贯穿整首歌,实现旋律与速度的一谱变速,节省大量 Roll 旋律的时间。 选择配器(Instrumentation),按想法选乐器,减少提示词中乐器不灵光的情况,也可选择特殊音色。 进行合成(synthesizer),当有两支 BPM 相同、调性相同的音乐时,可尝试更多拆分组合和有趣效果。 节省上传音频的点数消耗后,点数可用于:用提示词多 Roll 一些和流派、心情、场景相关的曲子,减少限制让 AI 音乐发挥更多创造力,把好旋律存起来作为制作素材;用于 roll 更多细节调整部分,如让某段曲子升调,提升作品品质。
2025-03-29