Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你会使用DeepSeek来回答问题吗

Answer

DeepSeek 是一款具有独特特点和优势的深度推理模型。其核心是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景来提供答案。它能够理解用户用“人话”表达的需求,无需用户学习特定提示词模板。在回答问题时能够进行深度思考,并非简单罗列信息。还可以模仿不同作家的文风进行写作,适用于多种文体和场景。

DeepSeek R1 不同于先前的普通模型,如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等,它与 OpenAI 现在最先进的模型 o1、o3 同属基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,以提升最终回答的质量。这种“自问自答”并非简单自言自语,而是模拟人类的深度思考。从用户初始问题出发,唤醒所需推理逻辑与知识,进行多步推导,为最终回答提供更完备的思考准备。DeepSeek R1 的“聪明”源于其独特的“教育方式”,在其他 AI 模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。

更多提示词技巧请查看集合·DeepSeek 提示词方法论

Content generated by AI large model, please carefully verify (powered by aily)

References

详解:DeepSeek深度推理+联网搜索 目前断档第一

[技术报告解读](https://waytoagi.feishu.cn/wiki/ZXnkwKXr8ipW2YkgFTKcxlXpnHc)[DeepSeek_R1.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/STbLbIvl9oAUAgxYgE3c1lpUnoe?allow_redirect=1)[DeepSeek_V3.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/GdOObWZP4ovWezxuYIjc0UtQnZd?allow_redirect=1)[heading1]使用技巧[content]先了解下优势和特点[heading2]DeepSeek的特点与优势[content]推理型大模型:DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。更懂人话:DeepSeek能够理解用户用“人话”表达的需求,而不需要用户学习和使用特定的提示词模板。深度思考:DeepSeek在回答问题时能够进行深度思考,而不是简单地罗列信息。文风转换器:DeepSeek可以模仿不同作家的文风进行写作,适用于多种文体和场景。更多提示词技巧请查看[集合·DeepSeek提示词方法论](https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf)

详解:DeepSeek深度推理+联网搜索 目前断档第一

[技术报告解读](https://waytoagi.feishu.cn/wiki/ZXnkwKXr8ipW2YkgFTKcxlXpnHc)[DeepSeek_R1.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/STbLbIvl9oAUAgxYgE3c1lpUnoe?allow_redirect=1)[DeepSeek_V3.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/GdOObWZP4ovWezxuYIjc0UtQnZd?allow_redirect=1)[heading1]使用技巧[content]先了解下优势和特点[heading2]DeepSeek的特点与优势[content]推理型大模型:DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。更懂人话:DeepSeek能够理解用户用“人话”表达的需求,而不需要用户学习和使用特定的提示词模板。深度思考:DeepSeek在回答问题时能够进行深度思考,而不是简单地罗列信息。文风转换器:DeepSeek可以模仿不同作家的文风进行写作,适用于多种文体和场景。更多提示词技巧请查看[集合·DeepSeek提示词方法论](https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf)

非技术人 10 分钟读懂 Deepseek R1|天才模型养成与 AI 超越人类的破晓时刻

就我观察而言,大多数人讨论的DeepSeek,基本指的是它的深度思考版本——DeepSeek R1。DeepSeek R1不同于先前的普通模型(如ChatGPT-4、Claude 3.5 sonnet、豆包、通义等),它与OpenAI现在最先进的模型o1、o3一样,同属于一条技术路线:基于强化学习RL的推理(Reasoning)模型。其标志性表现就是,在回答用户问题前,R1会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种“自问自答”,并非简单的自言自语,而是AI在模拟人类的深度思考。从用户初始问题“先有鸡还是先有蛋”出发,AI唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。这种能力,并非凭空而来。如果把AI比作人类,那么DeepSeek R1的“聪明”,源于其背后独特的“教育方式”。——在许多其他的AI模型还在接受“填鸭式教育”时,DeepSeek R1已经率先进入了“自学成才”的新阶段。

Others are asking
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
你是基于哪种ai模型的回答?
我是基于 Aily 和云雀大模型进行回答的。 Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。云雀是由字节跳动研发的语言模型,能通过便捷的自然语言交互,高效完成互动对话、信息获取、协助创作等任务。 您可以通过以下两种方式使用我: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,请在知识库首页获取最新二维码),然后点击加入,直接@机器人即可。 2. 在 WaytoAGI.com 的网站首页,直接输入您的问题,即可得到回答。
2025-04-11
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
具身智能是什么技术?用小学生能理解的话术回答
小朋友,具身智能呀,是人工智能里的一种很有趣的技术。 它说的是像机器人、虚拟代理这样的智能体,要通过和真实世界或者虚拟环境直接打交道来变得更聪明。 比如说,智能体要有能感觉周围环境的能力,能自己到处走,能拿东西、操作东西,还能学习新本领,适应新环境。 具身智能很在意智能体的“身体”,这个“身体”可以是机器人的样子,也可以是游戏里的虚拟角色。这些“身体”能帮智能体和环境互动,还会影响智能体学习。 像机器人可以通过它的手学会抓东西、摆弄东西,虚拟代理在游戏里能学会解决问题。 研究具身智能要用到好多知识,像机器人学、认知科学、神经科学还有计算机视觉。 在机器人领域,具身智能能让机器人更好地理解和适应我们人类的生活环境,跟我们交流更自然。在虚拟现实、增强现实和游戏里,也能让我们玩得更开心。 不过呢,具身智能还有一些难题要解决,比如怎么设计智能体的身体让它更聪明,怎么让它在复杂的环境里好好学习,还有怎么处理它和人类社会相关的一些问题。 简单说,具身智能就是给聪明的人工智能装上“身体”,让它能和周围环境更好地交流互动。
2025-04-05
作为小白如何在飞书搭建AI工具知识库机器人?分成前期、中期、后期流程回答
以下是小白在飞书搭建 AI 工具知识库机器人的流程,分为前期、中期和后期: 前期: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用不同的大模型,并了解如何白嫖大模型接口。 2. 确定机器人的功能范围,例如: 支持用户发送“关键字”,自助获取分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“自己的知识库”内容回答,不足时调用 AI 大模型,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能发布在微信公众号上,作为“微信客服助手”。 中期: 1. 搭建,这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,若不想接入微信,到此搭建完成即可,它也有问答界面。 2. 准备以下内容: 根据机器人的目的和核心能力编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可以用 word、txt、excel 等方式。 创建自己的【知识库】用于回答 AI 相关知识。 创建【工作流】,控制 AI 按照要求处理信息。 准备好自己的微信公众号。 后期: 搭建,其中的 cow 插件能进行文件总结、MJ 绘画等。
2025-04-03
我想了解如何提取自己的声音并实现大模型以我的声音回答我
要提取自己的声音并实现大模型以您的声音回答,目前提供的知识库中没有直接相关的详细内容。但可以为您提供一些可能有用的思路和参考方向: 对于声音提取,可能需要使用专业的音频处理软件和设备,将您的声音录制并进行处理和分析。 关于让大模型以您的声音回答,这可能涉及到语音合成技术。您可以先了解一些常见的语音合成模型和工具,例如通过创建大模型问答应用,获取推理 API 服务等。 同时,还可以参考一些关于大模型和语音处理的专业知识,比如大模型的本质是基于语言的概率模型,通过设置合适的 Prompt 来引导模型输出更准确的结果。 由于知识库中没有确切的针对您需求的详细步骤和方法,以上内容仅供您初步参考。
2025-04-01
如何使用cursor进行编程
以下是关于如何使用 Cursor 进行编程的相关信息: Cursor 旨在让您极其高效,是使用 AI 进行编码的最佳方式。您可以从代码库中获得最佳答案,参考特定文件或文档,一键使用模型中的代码。 它允许您使用指令编写代码,通过简单的提示就能更新整个类或函数。 Cursor 能通过预测您的下一个编辑,让您轻松完成更改。
2025-04-18
怎么使用cursor
以下是关于如何使用 Cursor 的详细介绍: 1. 访问 Cursor 官方网站:您可以通过 https://www.cursor.com/ 下载 Cursor。 2. 注册账号:使用您的邮箱(如 google、github、163、qq 邮箱)直接登录,也可接受二维码登录。 3. 安装中文包插件。 4. 配置相关设置: 在设置中进行 Rule for AI 配置。 按 ctrl/cmd+i 输入需求,例如“帮我做一个贪吃蛇游戏,在网页中玩”。 清晰表达需求,如详细说明游戏规则和逻辑,包括游戏界面、蛇的移动、食物、增长、死亡条件、得分、难度递增和游戏结束等方面。 5. 使用第三方文档: Cursor 附带一组已爬取、索引的第三方文档,可通过@Docs 符号访问。 若要添加自定义文档,可通过@Docs>Add new doc 实现,粘贴所需文档的 URL 后,Cursor 将索引并学习该文档,您即可将其用作上下文。 在 Cursor Settings>Features>Docs 下可管理已添加的自定义文档,进行编辑、删除或添加新文档的操作。 希望以上内容对您有所帮助。
2025-04-18
怎样使用AI做PPT
使用 AI 做 PPT 可以参考以下内容: 1. 信息的 AI 可视化: 优点:节省制作时间、具有优秀的视觉风格、能快速归纳整理信息、可用图形代替文字枯燥的表达。 注意事项: 不要指望复制一段提示词就能得到满意结果,这是与 AI 互动的过程,需要反复尝试。 AI 生成的是基于模型的 HTML 输出,并非真正的 PPT 格式,目前无法在 PPT 里进行二次深度编辑。 模型选择:目前推荐 Claude 3.7 Sonnet,可通过 POE 调用,不建议使用其他效果不佳的模型。 交互流程: 阶段 1 主观描述:通过文字聊天让 Claude 领悟您想要的视觉风格,描述要尽量具体,如颜色、画布、装饰等方面的要求。 2. 好用的 AI PPT 工具: Gamma:在线 PPT 制作网站,支持输入文本和想法提示快速生成幻灯片,可嵌入多媒体格式。https://gamma.app/ 美图 AI PPT:由美图秀秀团队推出,可通过输入文本描述生成专业设计。https://www.xdesign.com/ppt/ Mindshow:AI 驱动的辅助工具,提供智能设计功能。https://www.mindshow.fun/ 讯飞智文:科大讯飞推出的辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成等功能。https://zhiwen.xfyun.cn/ 3. 教学案例: 上午的尝试中,Claude + Gamma.app 帮助学生从组会准备工作中解放出来,实现了快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并学会使用等目的。 Claude 的用法示例:如通过一系列问题让其搜索权威期刊、论文,提取摘要等,并用于制作 PPT。
2025-04-18
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
装修设计可以使用哪些AI工具
以下是一些可用于装修设计的 AI 工具: 1. 酷家乐装修设计软件:利用图像生成和机器学习技术,为用户提供装修设计方案,用户可根据喜好选择和调整。 2. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 3. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 4. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 5. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 6. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供基于 AI 的生成设计工具,可根据输入自动产生多种设计方案。 7. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 8. Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入自动生成户型图。 9. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期引入标准和规范约束生成的设计结果。 10. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内信息集成,实现数据汇总与管理。 但每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-04-15
问题定义优化助手
以下是关于问题定义优化助手的相关内容: 市面上有很多 Prompt 框架,框架可理解为从不同角度为思考问题提供解决方案的路径。一个问题的解决通常包括问题背景(所需角色、具备的能力和资源)、问题目标(期望的输出结果和验收标准,如提供商务谈判的完整过程)、提供的资料信息、限制条件(如预算限制等)、角色技能(为目标服务所需调动的技能,如熟悉某个领域的商业案例)和工作流(解决问题时需完成的任务步骤,如信息收集、谈判策略设定等)。细致的内容可能得到更好的结果,但也可能限制可能性,这是一个平衡和折中的结果。 效果呈现方面,体验地址为 。 3 月 5 日作业要求大家看完小七姐的 5 篇入门指南并动手实践,写出自己的一条 prompt 及对话分享出来,提交格式为创作思路和目标|prompt 展示|输出结果。例如无上的目标是让大模型对自己的提问内容进行优化,其思路包括询问大模型“更好的提问”方法论、让 kimi 分析并优化等步骤。 在从 AI 助教到智慧学伴的应用探索中,提到了在不同学段和学科的应用场景,以及向 AI 大模型提问的问题设计,还涉及教育提示词优化助手。
2025-04-11
LLM模型响应时间较长,如何处理超时时间问题
处理 LLM 模型响应时间过长导致的超时问题,可以考虑以下方法: 1. 参数有效调整:这是一种新颖的微调方法,通过仅训练一部分参数来减轻微调 LLM 的挑战。这些参数可能是现有模型参数的子集,或者是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示中。 2. 优化提示设计:采用合适的提示方法,如零样本提示、一次性提示、Fewshot prompting 等。零样本提示是只给出描述任务的提示;一次性提示是让 LLM 执行任务的单个示例;Fewshot prompting 是让 LLM 执行任务的少量示例。同时,可以使用结构化模式设计提示,包含上下文、问题示例及相应答案等组件,以指示模型应如何响应。 3. 避免频繁调整某些参数:尤其是 Top K 和 Top P,不需要经常对其进行调整。 4. 关注模型响应质量:即使有良好的提示设计,模型输出仍可能不稳定,需要持续关注和优化。 5. 考虑成本和时间:微调大型模型可能耗时且成本高,为大模型提供服务也可能涉及额外麻烦和成本,需要综合评估和优化。
2025-04-11
有没有AI客服呢帮我解决天猫店铺的客服问题
天猫店铺有可用的 AI 客服,例如阿里的“小蜜”。在去年双 11 购物节,小蜜累计服务 4.1 亿次咨询,占比 85%,仅复杂纠纷转人工,用户满意度并未因是 AI 而下降,反而因回复快提升。此外,电商领域还有其他类似的 AI 客服应用,如京东推出的智能客服“JIMI”,每天处理数百万咨询,问题解决率超过 90%,使得京东客服团队规模缩小,有效分流了工作量。亚马逊的“智能客服代理”能通过对话 API 访问客户订单等数据,帮助顾客查询物流、办理退货,在上季度独立处理了超过 50%的客户请求。抖音小店客服也引入了 AI 回复,提升了商家客服响应速度。
2025-04-09
有哪些解决问题的提示词
以下是一些关于解决问题的提示词相关内容: 在使用 Claude 时,需遵循“Human:”/“Assistant:”的标准格式。对于 API 里的提示词,固定开头为“n\nHuman:”,固定结尾是“\n\nAssistant:”。 提示词要清晰明确,Claude 对清晰明确的提示词反馈最好。如有疑问,可向朋友展示提示词,询问其能否遵循指令做到要求的事。例如“Human:写一首关于机器人的俳句”“Human:写一首关于机器人的俳句。直接输出俳句不要跟我说话”。 可以使用结构化的提示词模板,如长文档示例中的“Human:<doc>{{文档}]</doc> 请用一个五年级学生能理解的语言来总结这篇文档的主要内容。”同时,对于长文档,建议把要问的问题放在提示词的最后面。 让 Claude 更好地接龙时,可以给它开个头儿。 角色扮演(又称角色性提示词)方面,Claude 有时需要了解它应该扮演的角色。
2025-04-08