Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

具身智能是什么技术?用小学生能理解的话术回答

Answer

小朋友,具身智能呀,是人工智能里的一种很有趣的技术。

它说的是像机器人、虚拟代理这样的智能体,要通过和真实世界或者虚拟环境直接打交道来变得更聪明。

比如说,智能体要有能感觉周围环境的能力,能自己到处走,能拿东西、操作东西,还能学习新本领,适应新环境。

具身智能很在意智能体的“身体”,这个“身体”可以是机器人的样子,也可以是游戏里的虚拟角色。这些“身体”能帮智能体和环境互动,还会影响智能体学习。

像机器人可以通过它的手学会抓东西、摆弄东西,虚拟代理在游戏里能学会解决问题。

研究具身智能要用到好多知识,像机器人学、认知科学、神经科学还有计算机视觉。

在机器人领域,具身智能能让机器人更好地理解和适应我们人类的生活环境,跟我们交流更自然。在虚拟现实、增强现实和游戏里,也能让我们玩得更开心。

不过呢,具身智能还有一些难题要解决,比如怎么设计智能体的身体让它更聪明,怎么让它在复杂的环境里好好学习,还有怎么处理它和人类社会相关的一些问题。

简单说,具身智能就是给聪明的人工智能装上“身体”,让它能和周围环境更好地交流互动。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:具身智能是什么?

具身智能(Embodied Intelligence)是人工智能领域的一个子领域,它强调智能体(如机器人、虚拟代理等)需要通过与物理世界或虚拟环境的直接交互来发展和展现智能。这一概念认为,智能不仅仅是处理信息的能力,还包括能够感知环境、进行自主导航、操作物体、学习和适应环境的能力。具身智能的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。这些身体不仅为智能体提供了与环境互动的手段,也影响了智能体的学习和发展。例如,一个机器人通过其机械臂与物体的互动,学习抓取和操纵技能;一个虚拟代理通过在游戏环境中的探索,学习解决问题的策略。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,具身智能关注的是如何设计能够自主行动和适应环境的机器人;在认知科学和神经科学中,研究者探索大脑如何处理与身体相关的信息,以及这些机制如何应用于人造智能系统;在计算机视觉中,研究者致力于开发算法,使智能体能够理解和解释视觉信息,从而进行有效的空间导航和物体识别。具身智能的一个重要应用是在机器人领域,特别是在服务机器人、工业自动化和辅助技术等方面。通过具身智能,机器人可以更好地理解和适应人类的生活环境,提供更加自然和有效的人机交互。此外,具身智能也在虚拟现实、增强现实和游戏设计等领域有着广泛的应用,通过创造更具沉浸感和交互性的体验,丰富了人们的数字生活。尽管具身智能在理论和技术上取得了显著进展,但它仍面临许多挑战。例如,如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

一篇具身智能的最新全面综述!(上)

具身智能,即“具身+智能”,是将机器学习算法适配至物理实体,从而与物理世界交互的人工智能范式。以ChatGPT为代表的“软件智能体”(或称“离身智能体”)使用大模型通过网页端、手机APP与用户进行交互,能够接受语音、文字、图片、视频的多种模态的用户指令,从而实现感知环境、规划、记忆以及工具调用,执行复杂的任务。在这些基础之上,具身智能体则将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流,强调智能体与物理环境之间的交互。通俗一点讲,就是要给人工智能这个聪明的“头脑”装上一副“身体”。这个“身体”可以是一部手机,可以是一台自动驾驶汽车。而人形机器人则是集各类核心尖端技术于一体的载体,是具身智能的代表产品。具身智能的三要素:本体、智能、环境具身智能的三要素:“本体”,即硬件载体;“智能”,即大模型、语音、图像、控制、导航等算法;“环境”,即本体所交互的物理世界。本体、智能、环境的高度耦合才是高级智能的基础。不同环境下的会有不同形态的硬件本体以适应环境。比如室内平地更适用轮式机器人,崎岖不平的地面更适用四足机器人(机器狗)。在具身智能体与环境的交互中,智能算法可以通过本体的传感器以感知环境,做出决策以操控本体执行动作任务,从而影响环境。在智能算法与环境的交互中还可以通过“交互学习”和拟人化思维去学习和适应环境,从而实现智能的增长。具身智能的四个模块:感知-决策-行动-反馈一个具身智能体的行动可以分为“感知-决策-行动-反馈”四个步骤,分别由四个模块完成,并形成一个闭环。

AI-Agent系列(一):智能体起源探究

理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。

Others are asking
具身智能最核心的技术热点是什么
具身智能最核心的技术热点包括以下方面: 1. 人机混合增强智能标准:规范多通道、多模式和多维度的交互途径、模式、方法和技术要求,如脑机接口、在线知识演化、动态自适应、动态识别、人机协同感知、人机协同决策与控制等。 2. 智能体标准:规范以通用大模型为核心的智能体实例及智能体基本功能、应用架构等技术要求,包括智能体强化学习、多任务分解、推理、提示词工程,智能体数据接口和参数范围,人机协作、智能体自主操作、多智能体分布式一致性等。 3. 群体智能标准:规范群体智能算法的控制、编队、感知、规划、决策、通信等技术要求和评测方法,包括自主控制、协同控制、任务规划、路径规划、协同决策、组网通信等。 4. 跨媒体智能标准:规范文本、图像、视频、音频等多模态数据处理基础、转换分析、融合应用等方面的技术要求,包括数据获取与处理、模态转换、模态对齐、融合与协同、应用扩展等。 5. 具身智能标准:规范多模态主动与交互、自主行为学习、仿真模拟、知识推理、具身导航、群体具身智能等。 具身智能需要具备感知、决策和执行三种核心能力。执行能力是技术难点,涉及硬件设计,具身智能体主要分为移动和操作两大能力。移动方面,各种类型机器人在不同地形下实现鲁棒的移动仍是前沿学术问题。操作方面,现阶段能落地的只有简单抓取,可泛化的通用执行能力是三大核心能力中最短的板。大语言模型(LLM)为具身智能热潮来临提供了机会,其强泛化能力和 zeroshot 能力使不再需要为每个任务手工调校机器人。
2025-03-12
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 核心:在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体不仅是互动手段,也影响智能体的学习和发展。 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学:关注设计能自主行动和适应环境的机器人。 认知科学和神经科学:探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉:致力于开发算法,使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别。 应用: 机器人领域:在服务机器人、工业自动化和辅助技术等方面,使机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域:创造更具沉浸感和交互性的体验。 特点: 三要素:“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块:感知决策行动反馈,形成闭环。 面临挑战:如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习、处理智能体与人类社会的伦理和安全问题等。 尽管具身智能在理论和技术上取得显著进展,但仍有诸多挑战待解决,未来研究将继续探索推动其发展和应用。
2025-03-12
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 核心:在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体不仅是互动手段,也影响智能体的学习和发展。 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学:关注设计能自主行动和适应环境的机器人。 认知科学和神经科学:探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉:致力于开发使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别的算法。 应用: 机器人领域:在服务机器人、工业自动化和辅助技术等方面,使机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域:创造更具沉浸感和交互性的体验。 重要要素和模块: 三要素:“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块:感知决策行动反馈,形成一个闭环。 尽管具身智能在理论和技术上取得显著进展,但仍面临诸多挑战,如智能体身体设计、复杂环境中的有效学习、与人类社会的伦理和安全问题等。未来研究将继续探索这些问题以推动其发展和应用。
2025-03-10
具身智能是什么?
具身智能是人工智能领域的一个子领域,指的是智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法让智能体理解和解释视觉信息,进行有效空间导航和物体识别。 具身智能的应用广泛,在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域,能创造更具沉浸感和交互性的体验。 具身智能有三要素:本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),三者高度耦合是高级智能的基础。其行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习、处理智能体与人类社会的伦理和安全问题等。
2025-03-10
具身智能软硬件解决方案。
具身智能的软硬件解决方案包括以下方面: 算法层: 技术层级: 任务层级:可细分为任务级、技能级、动作级、基元级、伺服级,通常关注前四个级别。 解决方案层级:通常可拆分为大脑+小脑两个层级。大脑负责人机交互与规划决策,小脑负责运动控制及将语义信息理解转化为动作。 大脑侧:负责人机交互,能通过视觉在语义层面理解场景、任务等并进行决策。大模型的发展对大脑有促进作用,大脑的长期发展高度依赖多模态大模型。如 2024 年 3 月,有鹿机器人发布了基于 LPLM10B 的软硬件结合产品 Master 2000。 整机硬件方案:基于下游场景需求设计运动、感知、计算和通信硬件方案。具身智能厂商倾向于软硬件全流程自主控制,自己制作机体,原因包括机体和数据模式未统一,训练数据与机体构造紧密联系,以及考虑二级供应商是否成熟和整机利润。部分强大厂商如 Tesla 具备制作更底层电机、传感器的能力,软硬件一体化制造能带来更高利润。 智能类型:包括认知智能和物理智能。认知智能涉及思考、规划和决策能力,完全由大脑驱动;物理智能指机器人的感知和与环境的运动互动能力,感知环节由大脑侧算法实现,行动环节由小脑侧算法和硬件配合完成。 发展趋势: 人形化:外形向人类细部特征靠拢,功能具备真实人类运动、灵活和环境判断能力。 成本下降显著:核心零部件成本降低,人形机器人成本及售价呈下降趋势。 构成元素:包括大脑(意图理解、环境感知、规划决策)、小脑(运动控制、语义信息理解转化为动作)、整机硬件方案。
2025-03-07
具身智能是什么?
具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态如机器人的机械结构,也可以是虚拟形态如模拟环境中的虚拟角色。身体不仅是与环境互动的手段,也影响智能体的学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域有重要应用,特别是服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域也有广泛应用,创造更具沉浸感和交互性的体验。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,形成闭环。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理与人类社会的伦理和安全问题等。未来研究将继续探索这些问题以推动其发展和应用。
2025-03-07
设计一个给小学生介绍ai的ppt
以下是为小学生设计的关于 AI 的 PPT 大纲: 幻灯片 1:封面 标题:走进神奇的 AI 世界 幻灯片 2:引入 互动问题:大家听说过 AI 吗? 引出主题:今天我们来探索 AI 幻灯片 3:什么是 AI? 简单解释:让计算机或机器能像人类一样思考和学习的技术 举例:如智能语音助手、自动驾驶汽车 幻灯片 4:AI 在生活中的应用 展示图片:如智能家居、智能医疗等 简单描述:如何让我们的生活更便捷 幻灯片 5:AI 的有趣之处 播放简短的动画或视频:展示机器人跳舞、画画等 引导思考:AI 还能做哪些有趣的事 幻灯片 6:未来的 AI 想象画面:描绘未来充满 AI 的世界 鼓励发言:大家希望未来有怎样的 AI 产品 幻灯片 7:总结 回顾重点:什么是 AI 以及它的应用和未来 感谢观看 在设计 PPT 时,注意使用生动的图片、简洁的文字和有趣的动画,以吸引小学生的注意力并激发他们的兴趣。
2025-03-24
怎么用ai制定中小学生的学习计划
以下是为中小学生制定学习计划的一些建议: 1. 明确学习目标:确定想要通过 AI 学习达到的具体成果,例如掌握某种编程语言或了解特定的 AI 应用领域。 2. 从基础入手: 学习编程语言,如 Python、JavaScript 等,掌握编程语法、数据结构和算法等基础知识。 了解 AI 的基本概念、发展历程和主要技术,如机器学习、深度学习等。 3. 选择合适的工具和平台: 体验 AI 生成工具,如 ChatGPT、Midjourney 等。 探索面向中小学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 4. 合理安排学习时间: 告知每日需要投入的学习时间。 规划每周用到的学习资源。 5. 增加学习成果评估:根据学生的情况,每周对学习成果进行评估。 6. 参与实践项目:参加学校或社区组织的 AI 相关活动,如编程竞赛、创意设计大赛等,尝试利用 AI 技术解决实际问题。 7. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解最新进展,培养对 AI 的思考和判断能力。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-04
希望用AI工具帮助小学生建立学习习惯,管理学习,学习习惯统计管理
目前针对使用 AI 工具帮助小学生建立学习习惯、管理学习以及进行学习习惯统计管理,暂时没有相关的具体内容。但可以考虑以下思路: 1. 利用智能学习软件,这类软件可以根据小学生的学习进度和表现制定个性化的学习计划,并进行学习时间的管理和提醒。 2. 借助具有语音交互功能的 AI 助手,鼓励小学生通过与它交流来分享学习心得和困惑,从而培养良好的学习反思习惯。 3. 运用一些具备学习数据统计分析功能的工具,帮助家长和老师了解小学生的学习行为模式,以便针对性地进行引导和纠正。 需要注意的是,在使用 AI 工具时,要确保其内容适合小学生的年龄和认知水平,同时也要关注使用时间,避免过度依赖。
2025-03-03
如果让你来给小学生设计一门人工智能视频课,12集,你会怎么设计
对于为小学生设计一门 12 集的人工智能视频课,以下是我的设计思路: 第一集:《走进神奇的 AI 世界》 介绍什么是人工智能,通过有趣的例子展示 AI 在日常生活中的应用,激发学生的兴趣。 第二集:《AI 的历史之旅》 讲述人工智能的发展历程,从早期的概念到现代的突破。 第三集:《AI 如何理解我们》 讲解 AI 是如何处理和理解人类输入的信息,如语言、图像等。 第四集:《智能机器人小伙伴》 介绍机器人如何通过 AI 技术实现各种功能和动作。 第五集:《AI 在游戏中的魔法》 展示 AI 在游戏中的应用,如游戏角色的智能行为。 第六集:《AI 与医疗保健》 讲述 AI 在医疗领域的作用,如疾病诊断、医疗影像分析等。 第七集:《AI 与交通出行》 介绍 AI 如何改善交通状况,如智能交通系统。 第八集:《AI 与教育的碰撞》 探讨 AI 在教育中的应用,如个性化学习、智能辅导。 第九集:《AI 绘画的奇妙世界》 让学生了解 AI 绘画的原理和创作过程。 第十集:《AI 音乐的旋律》 介绍 AI 在音乐创作和演奏方面的应用。 第十一集:《AI 的未来展望》 一起畅想未来 AI 可能带来的更多变化和创新。 第十二集:《我和 AI 的故事》 鼓励学生分享自己对 AI 的理解和想象,总结课程内容。 在每一集的设计中,都会采用生动有趣的动画、简单易懂的案例和互动环节,让小学生能够轻松理解和参与。
2025-02-14
如果让你来给小学生设计一门人工智能视频课你会怎么设计
以下是为小学生设计的人工智能视频课: 一、课程内容设计 1. 什么是 AI 设计思路:用学生能理解的语言,与三年级孩子互动,先倾听他们对 AI 的理解,再引出概念,激发兴趣和好奇心。 内容:大家好,今天我们要聊一个很酷的话题——人工智能,简称 AI。你们可能在电视、电脑游戏或电影中见过 AI。其实,人工智能就是让计算机或机器能像我们人类一样思考和学习的技术。 2. AI 的发展历程和重大突破 发展历程:1956 年人工智能被提出,从图灵测试后,科学家们努力让机器更聪明。 重大突破: 1997 年,深蓝在国际象棋比赛中战胜世界冠军。 2016 年,AlphaGo 在围棋比赛中战胜李世石。 2020 年,GPT3 发布,擅长用电脑写文章等语言相关任务。 2022 年,DALLE 发布,能根据描述画出想象中的图画。 说明:未来可补充新出的视频和音乐创作工具等,让孩子理解技术变革越来越快。 3. 玩转 AI——今日应用探索 文字生成图片:AI 的画画技巧 设计思路:事先准备关键词和存好的图片,围绕 AI 绘图的好处展开,包括创意增强、效率提升、降低技能门槛、探索新的艺术形式。 案例: 创意增强:“夜晚的未来城市风景,霓虹灯和飞行汽车”“超现实主义风景,漂浮的岛屿和瀑布云” 效率提升:“现代智能手机设计的快速草图”“新咖啡机概念的快速原型” 降低技能门槛:“简单卡通角色,微笑着,大眼睛”“基础的风景画,夕阳下的宁静湖泊” 探索新的艺术形式:“数字抽象艺术,鲜明的色彩和几何形状”“算法生成的艺术作品,具有分形图案” 互动:让学生共创,每人说一个关键词,5 个左右,放进 MJ 查看实时结果,引导大家的想法天马行空或反差极大,还可展示用 SD 做的作品。 二、课程总结 通过以上课程,让小学生对人工智能有初步的认识和了解,激发他们对科技的兴趣和探索欲望。
2025-02-14
可以推荐给小学生的ai工具
以下是为小学生推荐的一些 AI 工具: 1. 聊天对话类:Kimi、智谱清言等。 2. 图像类:Midjourney 等。 对于小学生来说,使用 AI 工具时需要在家长或老师的指导下进行,并且要注意合理控制使用时间,避免过度依赖。同时,也要关注工具的使用规则和安全问题。
2025-02-04
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
想要做一节讲如何用智能体做企业数字化转型的课程,如何设计
以下是关于如何设计用智能体做企业数字化转型课程的建议: 一、参考案例 1. 李国宝的相关经验 具有丰富的从业经验,包括通信工程、数据通信网络培训、创业、网络安全解决方案及培训、AI 课程开发与培训等。 开发过面向不同群体的 AI 课程,如《数字化转型实践》面向传统企业数字化、AI 赋能转型。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用课程 从零开始教学做应用界面,先基础教学,再涉及特定应用。 介绍当前承接业务,包括辅导、培训、定制及企业 AI 落地等。 挖掘用户对 AI 应用的功能需求,如对交互界面的需求。 二、课程设计要点 1. 对于企业管理者 AI 辅助决策:在小规模决策中使用 AI 分析工具,以其分析结果作为决策参考。 员工培训计划:制定 AI 工具使用的培训计划,帮助团队成员了解日常工作中如何有效利用 AI。 流程优化:识别公司中可能受益于 AI 自动化的重复性任务,从小流程开始测试 AI 解决方案的效果。 AI 伦理和政策:制定公司的 AI 使用政策,确保 AI 应用符合伦理标准和法律要求。 2. 对于教育工作者 AI 辅助教案设计:尝试使用 AI 帮助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 个性化学习路径:探索使用 AI 分析学生学习数据,为不同学生制定个性化学习计划。 创新教学方法:考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 AI 素养教育:开发简单的课程模块,教导学生了解 AI 基础知识、应用领域及其对社会的影响。 三、注意事项 无论面向哪个群体,都应记住:与 AI 协作是一个学习过程。从小处着手,保持好奇心和开放态度,会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。最重要的是,始终保持批判性思维,将 AI 视为强大的工具,而不是完全依赖的解决方案。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14