Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前ai发展成熟吗

Answer

目前 AI 仍处于不断发展的阶段,尚未完全成熟。

人类是工具的创造者,每一代都在前人的基础上创造出更强大的工具,如今 AGI 成为了人类进步的又一工具。长期以来,人类创新推动生活各方面繁荣改善,AI 也在持续快速发展。

例如,Transformer 架构早在 2017 年就已提出,但 AI 近几年才爆发,其中神经网络的规模是重要影响因素。以 GPT 模型为例,从 2018 年第一代的 1 亿左右参数量,到 2023 年第四代的万亿规模,规模越大智能程度越高,且在达到一定规模后出现“涌现”能力,智能程度飞速上升,但这种“涌现”出现的机理目前尚无统一解释。

在未来,AI 有望在多个领域取得进展,如 2024 年内,图片-超短视频的精细操控、AI 音频能力、“全真 AI 颜值网红”、游戏 AI NPC、AI 男/女朋友聊天、实时生成的内容、AI Agent 等方面会有发展;2025 - 2027 年,AI 3D 技术、全真 AI 虚拟人、AR/VR 技术、具身智能等技术可能会有明显突破。

然而,AI 立法、伦理讨论仍大规模落后于技术进展,AI 造成的 DeepFake、诈骗、网络攻击等问题开始引发担忧,且可能导致结构性失业等社会问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

Sam Altman又给AI打了针“强心针”

(*在此处使用AGI一词,目的是为了清晰地沟通。我们在这里使用“AGI”这个词,是为了把意思说清楚,避免断章取义的解读,并不是想借此修改或重新解读我们和微软之间现有合作关系的那些定义和流程。我们完全期望能和微软长期合作下去。)⼈类是⼯具的创造者,拥有与⽣俱来的理解和创造驱动⼒,这推动世界对我们所有⼈都越来越好。每⼀代⼈都在前⼈的发现基础上再接再厉,创造出更强⼤的⼯具⸺电⼒、晶体管、计算机、互联⽹,⽽很快就会是AGI。长期以来,⼈类创新时断时续却总体稳步向前,让⼈们的⽣活在⼏乎各⽅⾯都获得了原本难以想象的繁荣与改善。从某种意义上说,AGI只是⼈类共同搭建的这座不断增⾼的进步脚⼿架上的⼜⼀个⼯具。但从另⼀个⻆度来看,它⼜像某种开端,让⼈忍不住想说“这次不⼀样”;未来⾯临的经济增长看起来令⼈惊叹,我们可以想象⼀个世界⸺在这个世界⾥,我们可以治愈所有疾病,拥有更多的时间陪伴家⼈,并能充分发挥我们的创造潜能。⼗年后,也许地球上的每个⼈都能完成的成就将超过今天最具影响⼒的个⼈所能达到的⽔平。我们持续看到AI的快速发展。以下是关于AI经济学的三点观察:1.AI模型的智能⽔平⼤致等于⽤于训练和运⾏它的资源的对数。这些资源主要是训练计算量、数据和推理计算量。看起来只要花费⾜够多的资⾦,就能获得连续且可预测的收益;预测这⼀点的扩展定律在多个数量级上都相当准确。

AGI 万字长文(下)| 2024,分叉与洪流

2024年内图片-超短视频的精细操控:表情、细致动作、视频-文字匹配有一定操控能力的生成式短视频:风格化、动漫风最先成熟;真人稍晚AI音频能力长足进展:带感情的AI配音基本成熟“全真AI颜值网红”出现,可以稳定输出视频,可以直播带货游戏AI NPC有里程碑式进展,出现新的游戏生产方式AI男/女朋友聊天基本成熟:记忆上有明显突破,可以较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈实时生成的内容开始在社交媒体内容、广告中出现AI Agent有明确进展,办公场景“AI助手”开始有良好使用体验2AI的商业模式开始有明确用例:数据合成、工程平台、模型安全等可穿戴-全天候AI硬件层出不穷,虽然大多数不会成功中国AI达到或超过GPT4水平;美国出现GPT5;世界上开始现“主权AI”华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代要稍晚)AI造成的DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧AI立法、伦理讨论仍然大规模落后于技术进展……2025-2027AI 3D技术、物理规则成熟:正常人无法区别AI生成还是实景拍摄全真AI虚拟人成熟:包含感情的AI NPC成熟,开放世界游戏成熟;游戏中几乎无法区别真人和NPCAR/VR技术大规模商用接近AGI的技术出现人与AI配合的工作方式成为常态,很多日常决策开始由AI来执行AI生产的数据量超过全人类生产数据量,“真实”成为稀缺资源具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破“人的模型”出现,出现“集中化AGI”与“个人AGI”的历史分叉AI引发的社会问题开始加重,结构性失业开始出现AGI对于地缘政治的影响开始显露……"Limit of Understanding";Yifei Gong 2024,with Dall-E

一个希望有点意思的AI分享(二)

你可能注意到了,Transfomer架构在2017年就被提出了,但是AI似乎是最近几年才爆发的。那说明一定还有其它的重要因素影响了AI的发展。最重要的因素之一就是神经网络的规模。还记得我们之前说到的神经网络中每条连接的权重和每个节点的阈值是这个神经网络最重要的参数,它们事实上就是AI学习到的知识。那么,参数的大小一定程度上也体现了AI的知识多少和智慧水平。那么参数越大应该就越聪明咯?我们拿最早通过图灵测试的GPT模型为例。在2018年的时候,它的第一代模型参数量只有1个亿左右,第二代是15个亿,第三代是近两千亿,2023年的第四代模型到达了万亿规模(估计)。也正是第四代模型,才跨越了图灵测试的标准。这也是为什么现在的这一类AI又被大家成为大模型。因为“大”确实是它的一个很重要的特征。有人给GPT的模型做了一个可视化,这里每个小点都是一个数,可以从视觉上感受一下第三代的千亿模型是多么庞大的规模。目前大家使用的万亿模型已经超越了这个量级,未来可能会更多。事实上,大模型的“大”远非这么简单。在GPT3之后,人们发现了大模型的“涌现”能力。图中的图表是随着模型参数的增长在一些任务上AI完成的正确程度,也可以看作AI的智能度。可以看到,在某一个模型规模之下,即使模型参数增加了,AI的智能度始终是在非常低的水平徘徊;但是超过一个规模值之后,AI的智能程度会随着模型参数的增加飞速上升,能够到达原先无法企及的程度。这些智能就像是“涌现”出来一样。在参数量到一定规模以上,AI像是“开悟”了,会突然变得聪明很多,并且能学会“举一反三”。目前,对于这种“涌现”出现的机理,还并没有统一的解释。可以说,目前AI的发展,与其说是发明,其实更像是一种“发现”。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
建筑行业有哪成熟AI应用
在建筑行业,有以下成熟的 AI 应用: 1. HDAidMaster:这是一款云端工具,建筑师能在平台使用主流 AIGC 功能进行有趣的集卡式方案创作,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值高。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,设计师输入房间面积需求和土地约束,软件能自动生成户型图并查看详细设计结果。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,为设计师提供全新设计模式,在住宅设计早期可引入标准和规范约束 AI 生成的设计结果,保证合规性。 4. Fast AI 人工智能审图平台:从住宅设计图构件开始,形成全自动智能审图流程,能自动导入、区域划分、构件识别、强条审查和导出结果,为建筑信息自动建模打下基础,实现建筑全寿命周期内信息集成与管理。 此外,在建筑设计效果图生成方面,图片转绘技术也有应用,比如建筑公司可利用该功能将建筑设计草图或实景照片转化为不同风格的效果图,帮助客户快速理解设计方案的外观效果。
2025-03-21
有没有成熟的ai制作宣传海报的工作流
以下是一些成熟的 AI 制作宣传海报的工作流: 1. 确定需求场景:例如想在社交平台发布内容时,为了获得更多点赞,需要有吸引力的图片;网上图片质量差且易撞图,自己相册中的照片不合适等情况。 2. 大致流程: 主题与文案:确定海报主题,借助 ChatGPT 等文本类 AI 工具完成文案。 风格与布局:选择想要的风格意向,根据文案和风格灵活调整画面布局,背景不一定空白。 生成与筛选:使用无界 AI 输入关键词,生成并挑选满意的海报底图。 配文与排版:将上述素材进行合理排版,得到成品。排版可参考 AIGC 海报成果。 此外,还有一些相关案例: 1. 游戏 PV《追光者》:灵感来源于《艾尔登法环》、《黑神话悟空》等游戏开场片,加入佛教元素。结合 ChatGPT 进行故事框架创作,使用 MJ 绘图、SD 重绘,制作深度图以及视频、AI 抠图,Aive 尝试制作背景音乐,微软 AI 制作旁白。除撰写故事框架外,生图及后期配音约用 7 天完成。 2. Junie 首部 AI 长电影:在传统制作流程中融入 AI 工具,如在 Discord 平台创作,依据 Notion 里的制作安排和细分章节剧本推进。用到多种 AI 工具,包括 AI 图像生成(Stable Diffusion/Midjourney v5.2/DALL·E)、AI 动画(Pika/Runway/Deforum)、口型同步(DID)、AI 旁白(ElevenLabs)、剪辑(Premiere)、文字翻译(ChatGPT)等,也会结合 3D 技术、AE 以及实拍等传统手段。
2025-03-15
aigent成熟后会朝哪个方向发展
AIgent 成熟后的发展方向可能包括以下几个方面: 1. 技术层面: 解决记忆力问题,包括提高记忆准确性、完善逻辑完整性、实现合理遗忘、优化长期记忆机制与 Token 长度和调用效率之间的制衡。 增强长 Token 能力,如刚发布的 Gemeni1.5 在研究中达到 10M 的 Token 长度,ChatGPT 也在近期官宣了“记忆能力”,国内也有公司专攻超长 Token。 提升“使用工具能力”,出现了如字节推出的 Coze 等中间层产品。 2. 应用层面: 以人的方式相互交流,自主搭建社会协作关系,最终实现模仿人、替代人。 成为“一人公司”的数字员工,以大语言模型为大脑,串联所有已有的工具和新造的 AI 工具。 从“能力积累期”进入“应用爆发期”,多智能体协作成为解决复杂问题的主流范式,专业化分工与场景深耕是必经之路。 从规则驱动转向学习驱动模式,自主能力由多个核心组件协同支撑,多智能体系统(MAS)成为复杂任务解决方案。 构建智能体能力评估的统一标准与方法,建立可度量、可对比的评价体系。
2025-03-06
帮我找出现在成熟的人工智能大模型,列举他们的功能,附上打开链接
以下是一些成熟的人工智能大模型及其功能和链接: 百度(文心一言):https://wenxin.baidu.com 。 抖音(云雀大模型):https://www.doubao.com 。 智谱 AI(GLM 大模型):https://chatglm.cn 。 中科院(紫东太初大模型):https://xihe.mindspore.cn 。 百川智能(百川大模型):https://www.baichuanai.com/ 。 商汤(日日新大模型):https://www.sensetime.com/ 。 MiniMax(ABAB 大模型):https://api.minimax.chat 。 上海人工智能实验室(书生通用大模型):https://internai.org.cn 。 在这些大模型中: 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 。 目前不能进行自然语言交流的:昇思、书生 。 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 。 特色功能:昇思——生图,MiniMax——语音合成 。 此外,还有其他一些大模型: OpenAI 系统:包括 3.5 和 4.0 版本,一个新的变种使用插件连接到互联网和其他应用程序。Code Interpreter 是一个非常强大的 ChatGPT 版本,可以运行 Python 程序。如果未为 OpenAI 付费,只能使用 3.5 。除了插件变种和一个暂时停用的带有浏览功能的 GPT4 版本之外,这些模型都没有连接到互联网。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,例如可以创建和查看图像,且可以在网页浏览器中阅读文档,并连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 Anthropic:发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口,本质上是 LLM 的记忆。Claude 几乎可以保存一整本书或许多 PDF,与其他大型语言模型相比,它不太可能恶意行事。
2025-03-03
市场有哪些成熟的AI应用案例
以下是一些成熟的 AI 应用案例: 彩云天气 APP:这是一个 AI 天气预报预警系统,使用数据分析和机器学习技术,市场规模达数亿美元。它能提供准确的天气预报预警,保障生命财产安全,例如在暴雨来临前推送预警信息,提醒用户避免外出。 腾讯觅影:作为 AI 医疗影像分析平台,运用数据分析和机器学习,市场规模达数十亿美元。它可以分析医疗影像,辅助医生诊断,比如检测肺部结节、乳腺病变等,提高诊断效率和准确性。 钉钉会议管理功能:这是一个 AI 会议管理系统,采用自然语言处理和数据分析技术,市场规模达数亿美元。它能够管理会议流程,提高会议效率,比如自动记录会议内容,生成会议纪要,方便参会人员回顾。 微拍堂书法作品拍卖频道:此为 AI 书法作品销售平台,借助图像识别和数据分析技术,市场规模达数亿美元。它为书法爱好者提供作品销售渠道,比如用户可以在平台上拍卖自己的书法作品,也可以购买其他用户的作品。 宝宝树安全座椅推荐:AI 儿童安全座椅推荐系统,运用数据分析和机器学习,市场规模达数亿美元。它能根据儿童年龄、体重等信息为家长推荐合适的儿童安全座椅。 途虎养车保养推荐:AI 汽车保养套餐推荐系统,使用数据分析和机器学习,市场规模达数十亿美元。它会根据车辆情况推荐保养套餐,如更换机油、滤清器等。 丰巢快递柜管理系统:AI 物流快递柜管理系统,利用数据分析和物联网技术,市场规模达数十亿美元。它能优化快递柜使用效率,比如分配柜子、通知取件等。 智联招聘面试模拟功能:AI 招聘面试模拟平台,采用自然语言处理和机器学习技术,市场规模达数亿美元。它可以帮助求职者进行面试模拟。 酷家乐装修设计软件:AI 房地产装修设计平台,借助图像生成和机器学习技术,市场规模达数十亿美元。它能为用户提供装修设计方案,用户可根据自己的喜好进行选择和调整。 摄影 APP 参数调整功能:AI 摄影参数调整助手,运用图像识别和数据分析技术,市场规模达数亿美元。它能根据场景自动调整摄影参数,如曝光、对焦、感光度等。 音乐情感分析软件:AI 音乐情感分析平台,使用机器学习和音频处理技术,市场规模达数亿美元。它可以分析音乐的情感表达。 小米智能照明系统:AI 家居智能照明系统,利用物联网技术和机器学习,市场规模达数十亿美元。它能实现家居照明的智能化控制,根据用户的习惯和环境变化自动调整灯光亮度和颜色。 金融风险预警软件:AI 金融风险预警平台,运用数据分析和机器学习技术,市场规模达数十亿美元。它可以提前预警金融风险,比如股市下跌、汇率波动等。 马蜂窝路线优化功能:AI 旅游路线优化平台,采用数据分析和自然语言处理技术,市场规模达数亿美元。它能根据用户需求优化旅游路线,提高旅行体验。
2025-01-05
假设我建立一个针对中小企业的Ai落地赋能服务中心,结合目前中国市场比较成熟的Ai产品、技术、服务、培训等等内容,应该怎么设计这个中心
目前中国市场上成熟的 AI 产品、技术、服务和培训内容丰富多样。要设计针对中小企业的 AI 落地赋能服务中心,以下是一些建议: 产品方面: 引入适合中小企业业务流程的自动化软件,如智能客服系统、智能办公软件等。 提供基于 AI 的数据分析工具,帮助企业进行市场预测和客户洞察。 技术方面: 配备专业的技术团队,能够为企业提供 AI 技术的集成和定制化开发服务。 关注前沿的 AI 技术,如机器学习、深度学习、自然语言处理等,并将其转化为可应用的解决方案。 服务方面: 提供一站式的服务,包括需求评估、方案设计、实施部署和后续维护。 建立快速响应机制,及时解决企业在使用 AI 过程中遇到的问题。 培训方面: 设计针对不同层次员工的培训课程,涵盖基础知识普及、操作技能提升和高级应用开发等。 采用线上线下相结合的培训方式,满足企业员工的多样化学习需求。 同时,服务中心还需要建立良好的沟通渠道,与中小企业保持密切联系,了解他们的实际需求和反馈,不断优化和完善服务内容和方式。
2024-12-19
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
完全免費的AI工具目前有哪些
目前完全免费的 AI 工具包括: 1. 麻省理工学院(MIT)为 8 18 岁孩子推出的 AI 课程 Day of AI,包含在 MIT 的 RAISE 项目中。不过该课程资源主要面向家长和老师群体,大孩子可自学,小孩子可能需要家长辅助。 2. 元子提到的一些能让普通人最低成本直接上手试的 AI 工具,包括聊天工具、绘画工具、视频工具、音乐工具等,但未具体指明具体的工具名称。
2025-04-13
gemini-2.5目前是什么水平
Gemini 2.5 是一款全能思考模型,具有以下特点和优势: 多领域达到 SOTA 水平,逻辑、代码、任务处理能力大幅提升。 支持 100 万 tokens 上下文,具备强大的阅读能力。 统一架构原生多模态支持,图文音码协同处理,并非外挂而是原生融合。 您可以通过以下链接获取更多详细信息:https://www.xiaohu.ai/c/xiaohuai/googlegemini25proexperimental
2025-04-13
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13
分析AI颠覆性发展的生产策略调查的研究情况综述
以下是关于企业构建和购买生成式 AI 方式的 16 个变化的研究情况综述: 生成式人工智能在 2023 年迅速席卷消费市场,创下超过 10 亿美元的消费支出纪录。预计 2024 年企业领域的收入机会将数倍于消费市场。去年,企业对 genAI 的参与多局限于少数明显用例,且以“GPTwrapper(GPT 套壳)”产品作为新的 SKU 交付,一些人对其在企业中的扩展持怀疑态度。 然而,在过去几个月,a16Z 与数十家财富 500 强和顶级企业领导人交谈并对 70 多位进行调查后发现,过去 6 个月里,企业对生成式 AI 的资源配置和态度有显著变化。尽管仍有保留,但企业领导人几乎将预算增加两倍,更多应用部署在较小的开源模型上,并将更多业务从早期实验转移到生产环境中。 这对创始人是巨大机遇。a16Z 认为,为客户“以 AI 为中心的战略计划”构建解决方案,能预见痛点,从重服务模式转向构建可扩展产品的人工智能初创公司,将抓住新投资浪潮并占据重要市场份额。 任何时候,为企业构建和销售产品都需深入了解客户预算、关注点和路线图。a16Z 根据访谈结果总结了 16 个最为关键的考虑因素,涉及资源、模型和应用。
2025-04-15
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
现在Ai已经发展到什么程度了
目前 AI 的发展已不再局限于单一的技术和应用范畴,而是融合了众多学科知识,并深入渗透到生活的各个层面,引发了一场生产力的革命。 有观点认为,AI 引领的是第四次工业革命的浪潮:继蒸汽机引发的机械化变革、电力驱动的电气化革新,以及电脑普及带来的信息化浪潮之后,AI 正推动着智能化时代的到来。 2025 开年 3 个月,AI 已经狂飙!R1 席卷全球,然后是 O3、Grok 3、Claude 3.7、GPT4.5 等,短短 3 个月内,AI 更新密集发布。然而很多人仍未察觉 AI 正在指数级加速,甚至抱怨 GPT4.5 表现不佳,但事实上,AI 发展已经是直线拉升状态,每天都在进步。 此外,Grok 语音模式已全面开放,支持 11 种模式(包括 2 种 18 禁),自带语音字幕,是学习英语的好工具,但目前仅支持英文。
2025-04-13