Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

agent和copilot的区别

Answer

Copilot 和 Agent 主要有以下区别:

  1. 核心功能:
    • Copilot 更像是辅助驾驶员,依赖人类指导和提示完成任务,功能局限于给定框架内。
    • Agent 像初级主驾驶,具有更高自主性和决策能力,能根据目标自主规划处理流程并自我迭代调整。
  2. 流程决策:
    • Copilot 处理流程依赖人类确定,是静态的,参与更多在局部环节。
    • Agent 解决问题流程由 AI 自主确定,是动态的,能自行规划任务步骤并根据反馈调整流程。
  3. 应用范围:
    • Copilot 主要用于处理简单、特定任务,作为工具或助手存在,需要人类引导监督。
    • Agent 能够处理复杂、大型任务,并在 LLM 薄弱阶段使用工具或 API 增强。
  4. 开发重点:
    • Copilot 主要依赖 LLM 性能,开发重点在于 Prompt Engineering。
    • Agent 同样依赖 LLM 性能,开发重点在于 Flow Engineering,把外围流程和框架系统化。

此外,Agent 具备“决策权”,可自主处理问题,无需确认;Copilot 需要人类确认才能执行任务。业界普遍认为,Copilot 更适合各行业现有软件大厂,而 AI Agent 为创业公司提供了探索空间。

Content generated by AI large model, please carefully verify (powered by aily)

References

大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库

目前大模型的产品类型,主要有两种:Copilot:翻译成副驾驶,助手。在帮助用户解决问题时起辅助作用,例如github copilot是帮助程序员编程的助手Agent:更像一个主驾驶,智能体,可以根据任务目标进行自主思考和行动,具有更强的独立性和执行复杂任务的能力我们从核心功能、流程决策、应用范围和开发重点几个方面对比Copilot和Agent:1.核心功能Copilot:更像是一个辅助驾驶员,更多地依赖于人类的指导和提示来完成任务。Copilot在处理任务时,通常是在人为设定的范围内操作,比如基于特定的提示生成答案。它的功能很大程度上局限于在给定框架内工作。Agent:像一个初级的主驾驶,具有更高的自主性和决策能力。能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。2.流程决策Copilot:在处理流程方面,Copilot往往依赖于Human确定的流程,这个流程是静态的。它的参与更多是在局部环节,而不是整个流程的设计和执行。Agent:Agent解决问题的流程是由AI自主确定的,这个流程是动态的。它不仅可以自行规划任务的各个步骤,还能够根据执行过程中的反馈动态调整流程。3.应用范围Copilot:主要用于处理一些简单的、特定的任务,更多是作为一个工具或者助手存在,需要人类的引导和监督。Agent:能够处理复杂的、大型的任务,并在LLM薄弱的阶段使用工具或者API等进行增强。4.开发重点Copilot:主要依赖于LLM的性能,Copilot的开发重点在于Prompt Engineering。Agent:同样依赖于LLM的性能,但Agent的开发重点在于Flow Engineering,也就是在假定LLM足够强大的基础上,把外围的流程和框架系统化,坐等一个强劲的LLM核心。

宝玉 日报

热门话题:信息泛滥,深度研究增量价值可能反而较低。小众/专业话题:数据更集中,Deep Research价值更高。局限:无法获取“非公开信息”,可能导致研究结果严重失真,让人误以为“已经知道一切”。?深度研究分析:[https://x.com/dotey/status/1890942806274805863](https://x.com/dotey/status/1890942806274805863)?原文:[https://stratechery.com/2025/deep-research-and-knowledge-value/](https://stratechery.com/2025/deep-research-and-knowledge-value/)?译文:[https://mp.weixin.qq.com/s/muw1fYcSRPktUqOT05voSA?token=372115260&lang=zh_CN](https://mp.weixin.qq.com/s/muw1fYcSRPktUqOT05voSA?token=372115260&lang=zh_CN)5⃣️?AI Agent vs.Copilot:决策权的挑战Agent具备“决策权”,可自主处理问题,无需确认。Copilot需要人类确认才能执行任务。核心问题:如何让Agent在无确认时,也能做出符合预期的决策??[https://x.com/dotey/status/1890939422679400758](https://x.com/dotey/status/1890939422679400758)

展望2025,AI行业有哪些创新机会? | 峰瑞报告

业界普遍认为,Copilot更适合各行业现有软件大厂,而AI Agent则为创业公司提供了探索的空间。AI Agent涉及技术突破和可行性验证,其风险和不确定性使创业公司和大厂站在同一起跑线上,具备相似的探索条件。此外,创业公司在研发AI Agent时,可以采取分阶段策略,先聚焦于特定垂直领域的小场景切入,以降低开发难度并增加成功概率。峰瑞资本投资的AI Coding创业公司Babel是该领域的一个典型代表。他们专注于AI Agent的研发,凭借卓越的技术实力,在行业内占据领先地位,并曾在OpenAI推出的SWE-benchmark-verified中荣获第一名的优异成绩。在产品定位上,Babel避免“大而全”的发展策略,而是聚焦于一个垂直且明确的应用场景,为客户自动生成单元测试(Unit Test)。其核心产品Test Gru已在美国上线,无需用户改变现有工作流程,便可自动为代码生成并运行单元测试,随后提交PR(Pull Request)。目前,其客户侧PR接受率约为70%,这一数据充分证明了产品在实际应用中的可行性与用户认可度。▎为什么中国的AI应用要出海?在前面我们提到,北美和欧洲贡献了2024全年全球AI移动应用内付费收入的三分之二(68%),是AI应用的主要消费市场。选择出海,尤其是进军北美和欧洲市场,对中国AI创业公司而言是一个合理且明智的选择。而且这两个市场的客单价高(是目前国内市场的5倍以上),对创业公司友好,用户付费意愿强烈,需求标准化程度高。这些优势使北美和欧洲成为中国AI创业公司寻求增长和业务拓展的理想目标。我们投资的大部分AI应用公司目前都在实施自己的AI出海计划。

Others are asking
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
B端AI Agent
以下是关于 B 端 AI Agent 的相关知识: 一、概念定义 1. 智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。随着 ChatGPT 与 AI 概念的爆火,出现了很多相关新名词,如 bot 和 GPTs 等。AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会。 C 端案例:如社交方向,用户注册后先捏一个自己的 Agent,然后让其与他人的 Agent 聊天,两个 Agent 聊到一起后真人再介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:字节扣子和腾讯元器若为面向普通人的低代码平台,类似 APP 时代的个人开发者,那么帮助 B 端商家搭建 Agent 就类似 APP 时代专业做 APP 的。 2. 智能体开发平台:最早接触到的扣子 Coze 是通过一篇科技报道,如 2 月 1 日,字节正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人较常用的是扣子,所以常对比字节扣子和腾讯元器。 3. 关注智能体的原因:目前 AI Agent 的概念在市场上未达成共识,存在被滥用现象。AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化、自主完成任务、多 Agent 协作等特点。目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少,一方面是高度智能化的 Agent 能力需打磨,概念落地有距离;另一方面是 AI 和娱乐消费诉求结合少,主要带来生产方式和效率变革,个人消费者方向目前只看到“私人助理”场景。
2025-04-15
有关 ai agent 的科普文章
以下是为您提供的关于 AI Agent 的科普内容: AI Agent 是一个融合了多学科精髓的综合实体,包括语言学、心理学、神经学、逻辑学、社会科学和计算机科学等。它不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。 目前,关于 AI Agent 存在一些情况。例如,网络上对其的介绍往往晦涩难懂,让人感觉神秘莫测,其自主性、学习能力、推理能力等核心概念,以及如何规划和执行任务、理解并处理信息等方面,都像是笼罩在一层神秘面纱之下。 另外,以国与国之间的外交为例来解释相关协议。假设每个 AI 智能体(Agent)就是一个小国家,它们各自有自己的语言和规矩。各国大使馆试图互相沟通、做生意、交换情报,但现实中存在诸多问题,如协议各异、要求不同等。 如果您想了解更多关于 AI Agent 的详细内容,可访问: 。
2025-04-15
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
AGENT
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 智能体具有以下特点: 1. 自主系统:通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。 2. 关键组成部分: 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆:包括短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索实现长时间保留和回忆信息。 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息。 以下是一些与智能体相关的资源目录: 关于 2025AGENT 智能体全球创作大赛: 1. 报名:通过→首页的“立即参赛”按钮进入报名页面,填写相关信息并提交即可,且参赛完全免费。 2. 提交作品:在本网站直接提交,若采用 flowith 搭建了 Agent 可以在微博、小红书、即刻平台发布,并@Flowith 官方,可获得额外会员奖励。 3. 奖项设置:设有金、银、铜奖和多个单项奖,获奖后将获得组委会颁发的奖金和证书,需保证联系方式准确以便联系。 4. 知识产权归属:参赛作品的知识产权归参赛者所有,但组委会有权在宣传和展示中使用参赛作品。
2025-04-12
AI workflow在企业中是否比Agent应用价值和场景更多
AI workflow 和 Agent 在企业中的应用价值和场景各有特点。 Agentic Workflows 具有以下优势: 1. 灵活性、适应性和可定制性:能够根据任务难度进行调整和演变,通过组合不同模式实现定制,在需求和复杂性增长时进行迭代升级。 2. 在复杂任务上的性能提升:将复杂任务分解为更小、可管理的步骤,显著优于确定性的零样本方法。 3. 自我纠正和持续学习:能够评估自身行为,完善策略,从过去经验中学习,在每次迭代中变得更有效和个性化。 4. 操作效率和可扩展性:可以高精度自动化重复任务,减少人工操作和运营成本,还能轻松扩展。 Agentic Workflow 的应用场景包括原子设计模式的组合、与人类反馈循环集成等。例如,Agentic RAG 在检索增强生成流程中引入了一个或多个 AI Agents,在规划阶段可进行查询分解等操作,还能评估数据和响应的相关性和准确性。 一般来说,Workflow 是一系列旨在完成特定任务或目标的相互连接的步骤。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流利用大模型或其他 AI 技术,分为 Agentic 和非 Agentic 两类。非 Agentic 工作流中,大模型根据指令生成输出。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,被授予权限收集数据、执行任务并做出决策,利用 Agents 的核心组件将传统工作流转变为响应式、自适应和自我进化的过程。 综上所述,不能简单地说 AI workflow 在企业中比 Agent 应用价值和场景更多,这取决于企业的具体需求和任务特点。
2025-04-09
github copilot
Copilot 一词在航空领域原本指飞行员的助手或副驾驶,在 AI 领域则被用来形象地描述 AI 的角色和功能。 在 AI 领域,Copilot 强调其辅助和协作性质,像飞行中的副驾驶一样协助用户完成各种任务,提供信息、解答问题甚至进行创新性的内容创作,使用户的工作或生活更加便捷高效。 例如,Microsoft Copilot 可以进行智能对话、提供信息、帮助用户创作内容等。而 Github Copilot 是专为编程设计的,它可以理解用户的代码,提供代码建议,甚至帮助用户写出新的代码。 在编程或辅助编程方面,有以下一些 AI 产品: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手,支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。 对于程序员来说,HuggingFace 声称其性能超过了用于训练 OpenAI 的 GitHub Copilot 的模型。StarCoder 是在一个名为 The Stack 的开放数据集上进行训练的,可与 VSCode 集成。 Hugging Face 发布了名为 HuggingChat 的开源聊天机器人,拥有 Web 界面和 API。 开源社区与科技巨头竞争激烈,RedPajama 是 Together 最新的倡议,设定了大胆的目标来推动开源模型的进步,包括制作数据集、训练基础模型、实现指令调整等。 项目链接:https://www.together.xyz/blog/redpajama 模型链接:https://www.together.xyz/blog/redpajamamodelsv1
2025-04-09
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
和ima.copilot功能差不多的产品
以下是一些和 ima.copilot 功能差不多的产品: 飞桨 PaddlePaddle:代码助手,网址为 paddlepaddle.org.cn。 百度橙篇:写作软件,网址为 cp.baidu.com。 BigModel:开发工具,网址为 open.bigmodel.cn。 万兴 PDF:研究工具,网址为 pdf.wondershare.cn。 百川智能:聊天机器人,网址为 baichuanai.com。 360 智脑:聊天机器人,网址为 ai.360.com。 GitMind 思乎:思维导图,网址为 gitmind.cn。 阿里通义听悟:效率工具,网址为 tingwu.aliyun.com。
2025-03-06
ima.copilot怎么高效利用
ima.copilot 高效利用的方法如下: 文档解读:在首页点击文档解读,可从知识库添加文档或上传本地文档,输入问题后 ima 作答,并会引用公众号资料作为参考。但需注意其回答与上传文档的关联度较弱,回答底部可点击“记笔记”在应用内新建笔记文档。 阅读公众号文章:复制公众号链接即可开始阅读,右侧聊天窗口可通过系统默认提示词快速总结文章要点,左侧正文窗口选中部分内容后,可点击 AI 解读和翻译按钮,AI 回答和正文选中内容都可点击“记笔记”。 搜索查看各种政策类文章:一是因为公众号内容更新快,二是有官方公众号发布的权威内容。 ima.copilot 最大的优势是拥有公众号这座内容金山,但知识库内搜索和笔记内搜索目前做得一般。 相关资料链接:腾讯 ima.copilot→https://ima.qq.com 。 此外,在“AI 智库|月度榜单? (11 月)”中,ima.copilot 在国内个人助理分类中排名 A4+1,网址为 ima.qq.com,活跃用户为 24 万人,环比变化为 2.5462 。
2025-03-06
有哪些优秀的AI copilot?
以下是一些优秀的 AI copilot: 1. 对于编程辅助方面: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的代码编写助手,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 Codeium:由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 在 Agent 构建平台方面: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作等,并能部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并能访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景表现出色。 3. 此外,还有一些新的 AI 产品和网站,如: SciSpace Copilot:由印度论文服务平台 SciSpace 开发,用于解释科学文献中的文本、数字和表格,输出内容更精确。链接:https://typeset.io/ AIPRM for ChatGPT:SEO Prompt 模板插件,支持 ChatGPT 和 Midjourney 等。链接:https://www.aiprm.com/ Teamsmart:有趣的文档助手,根据不同职业/技能提供不同能力点的机器人。链接:https://www.teamsmart.ai/ Boring Report:应对标题党的神器,去除文章夸张表述,保留客观事实。
2025-01-18
Microsoft 365 Copilot是收费软件吗
Microsoft 365 Copilot 需订阅 Microsoft 365 才能使用,微软将于 12 月 1 日在中国大陆免费提供 Copilot 功能给企业和教育机构。Copilot AI 模型支持联网获取数据。
2025-01-03
AI 衡量一个AI任务的指标是不是有准确率 和召回率 分别啥区别
在 AI 任务中,常见的衡量指标包括准确率和召回率。准确率(Accuracy)衡量的是模型预测正确的比例。而召回率主要用于信息检索等任务,衡量的是模型能够正确检索出相关内容的比例。 在摘要任务中,一般用 ROUGE 指标,其中 ROUGE2 是把两个 sequence 按 2gram 的方式做切分做频次统计,然后计算 pred 和 gt 之间的召回率。 对于不同的 AI 任务,还有其他多种指标,如在 NLP 中: 信息检索任务常用 NDCG@K 指标,核心衡量最相关文档是否排序足够靠前。 文本生成任务可用 BitsperByte 指标。 针对二分类任务,一般用 ECE 指标(Expected Calibration Error)来度量模型输出概率 p 时,最终正确率真的为 p 的一致性。 此外,还有一些其他方面的评估指标,如不确定性(Calibration and Uncertainty)、鲁棒性(Robustness,包括 invariance 和 equivariance)、公平性(Fairness)、偏见程度(Bias and stereotypes)、有毒性(Toxicity)等。 传统的 RAG 解决方案在检索效率和准确性上存在问题,Anthropic 通过“上下文嵌入”解决了部分问题,但 RAG 的评估仍待解决,研究人员正在探索新的方法,如 Ragnarök。 在提示词设计方面,Claude 官方手册提出“链式提示”的方法理念,将复杂任务拆解为多个步骤,具有准确率高、清晰性好、可追溯性强等好处。ChatGPT 官方手册也有类似理念,同时还有相关论文如在 ICLR 2023 上发表的提出 LeasttoMost Prompting 提示词策略的论文,在文本理解和生成场景中表现优秀。
2025-04-09
工作流 和 智能体的区别?
工作流和智能体的区别主要体现在以下几个方面: 定义: 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 功能: 智能体是一个自动化的“助手”,用来执行特定任务,擅长做一些具体的、重复性的任务,比如客服聊天、推荐商品、处理订单等,但只能按照预先设定的规则和任务来做事,如果遇到超出范围的情况,就不知道怎么办了。 工作流是一系列任务的流程,决定了每个步骤应该做什么,可以处理一个完整的过程,比如从客户下单、付款到发货和售后服务,涵盖了所有步骤和环节,更灵活,能够适应变化,可以调整步骤和规则来应对不同的情况,不需要一开始就固定下来。 范围: 智能体是特定任务的“助手”,用于局部执行任务。 工作流是一个“计划”或“路线图”,指导整个任务的流程。简单说,工作流是全局的,智能体是局部的。 在业务中,通常需要的是工作流而非单个智能体,因为整个业务流程设计至关重要。例如,在烹饪中,关键不在于使用多贵的锅,而是按步骤完成每道工序。因此,工作流才是解决问题的关键,它帮助优化思路、提升效率。设计好工作流才能大幅提升整体业务效率。
2025-04-08
在ai context中,token和word的区别是?
在 AI 领域中,Token 和 Word 有以下区别: 定义和范围:Token 通常是大语言模型处理文本数据时的一个单元,在不同语境下,可能代表一个字、一个词、一个句子、标点、词根、前缀等,更加灵活。而 Word 一般指能够表达一定意义的独立单位,如单词。 语言处理:在英文中,一个 Word 通常是一个词或标点符号。在一些汉语处理系统中,一个 Word 可能是一个字或一个词。而 Token 在不同的语言模型和处理系统中,对应的范围和形式有所不同。 作用和意义:Token 不仅是文本数据的单位,还可能携带丰富的语义、句法等信息,在模型中有着对应的向量表示。Word 主要用于传达相对明确和完整的意义。 计算和收费:大模型的收费计算方法以及对输入输出长度的限制,通常是以 Token 为单位计量的。 例如,在处理“ I’m happy ”这句话时,“I”、“’m”、“happy”可能被视为 Token,而“I’m happy”整体可看作一个 Word 。
2025-04-08
人工智能搜索与百度搜索的区别
人工智能搜索与百度搜索存在以下区别: 1. 底层技术:人工智能搜索的底层技术常包括“RAG”,即“检索增强生成”,包括检索、增强和生成三个步骤。而百度搜索的技术构成相对复杂,不断融合新的技术和功能。 2. 发展路径:在中国市场,相较欧美,百度作为搜索巨头已将文心一言大模型融入搜索,提供对话式回答和创作功能。同时,市场上还涌现出如秘塔 AI 搜索等创新型产品,主打“无广告,直接答案”,提供结构化结果和引用来源等特色功能。 3. 产品更新与竞争态势:Google 仍在战斗前线密集释放技能,与其他公司竞争激烈。而百度在新模型发布方面相对较少。此外,Google 推出新功能曾引发大量用户不满,而百度的相关新功能在页面布局和使用体验上更靠近某些特定产品,并聚合了多种创作能力和智能体快捷调用窗口。百度文库也上线了“AI 全网搜”功能,打通了特定工作流,产品功能较为完整,但受限于模型能力,生成内容尚有提升空间。
2025-04-01
用ai建立知识库和直接使用ai有什么区别、
用 AI 建立知识库和直接使用 AI 主要有以下区别: 直接使用 AI 时,AI 生成的内容可能较为笼统模糊,就像遇到只会说“很急,今天就要”却不提供具体指导的领导。若想让 AI 成为得力助手,需对复杂任务进行拆解,提供方法论和定义输出格式。 建立知识库就如同为 AI 准备了“教科书”。知识库灵活,但偶尔会出现查不到内容而“猜题”的情况。例如,将《梦想与颠覆》卡牌等相关内容导入作为 AI 可调用的知识库,后续在创作中激活知识库,AI 会根据场景自动匹配库内素材,使输出更具针对性。 相比之下,微调类似于让 AI“自己真的学会了整本书”,答题更快更准,但训练成本高。微调适合高精度、长期任务,而知识库更适合临时查找、快速问答。
2025-03-30