Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

汇总一下现在的大语言模型都有哪些,国外和国内的模型分别列出来

Answer

以下是国内外的大语言模型汇总:

国外大语言模型:

  • GPT-4(OpenAI):目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。
  • Gemini Ultra(Google):多模态人工智能模型,采用神经网络架构,对标 GPT-4,可用于回答问题、生成代码、处理文本等。
  • Claude 3 Opus(Anthropic):多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能;实现了接近完美的召回率。

国内大语言模型:

  • 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。
  • 讯飞星火:目前体验效果较好。
  • 悟道・天鹰(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。
  • 清华 ChatGLM 。

此外,国内还有通用模型如通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。

Content generated by AI large model, please carefully verify (powered by aily)

References

02-基础通识课

[heading2]总结大语言模型的介绍与原理国内大模型的分类:国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI蛋白质结构预测等。大模型的体验:以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。大语言模型的工作原理:大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用b链形容大小。Transformer架构:Transformer是大语言模型训练架构,17年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的temperature。关于大语言模型的原理、应用及相关概念Transformer模型原理:通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。Prompt的分类和法则:分为system prompt、user prompt和assistant prompt,写好prompt的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。Fine tuning微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。RAG概念:未对RAG的具体内容进行详细阐述,仅提出了这个概念。

2024AIGC法律风险研究报告(更新版).pdf

文本生成(text generation)涉及使用机器学习(machine learning)模型,根据从现有文本数据中学习的模式生成新的文本。用于文本生成的模型可以是马尔科夫链(Markov Chains)、循环神经网络(RNN)、长短时记忆网络(LSTMs),2AIGC法律风险研究报告以及凭借其延长的注意力广度(attention span)而彻底改变了AI领域的Transformer等。文本生成在自然语言处理、聊天机器人和内容创建领域(自动写作、文本摘要)有许多应用。[heading1]一些具有代表性的海外项目:[content]➢GPT-4(OpenAI):目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。➢Gemini Ultra(Google):多模态人工智能模型,采用神经网络架构,对标GPT-4,可用于回答问题、生成代码、处理文本等。➢Claude 3 Opus(Anthropic):多模态模型,能处理超过1百万token的输入,具有实时聊天、数据处理、分析预测等功能;实现了接近完美的召回率。[heading1]一些具有代表性的国内项目:[content]➢“悟道・天鹰”(北京智源人工智能研究院):“悟道・天鹰”(Aquila)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。➢文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。

观点:如何深入的用好ChatGPT,以及一些思考

另一种理解是AI构成网络,摒弃人类语言进行沟通,最终超越人类。N3(Neural Network Network)神经网络的相互链接,AI之间采用更为底层的向量数据交流,跨越人类语言的低效率阻碍。图灵机,自递归,简单的规则涌现出复杂的现象。4、群雄逐鹿大模型国外开源百花齐放,国内百模大战,目前已有68个。深圳就4个。下面的图是公众号“走向未来”的大神整理。github地址:https://github.com/wgwang/LLMs-In-China有一点浪费资源,有特色的不多,模型不大的也没啥大智力。目前体验效果比较好的有科大星火模型,清华ChatGLM。百度文心也可。星火目前感觉最接近gpt3.5(0301版本)的8 0%-90%。不过最近GPT3.5进化到6月版本,效果要强于0301版本了。5、大模型的测试怎样评估这些大模型,怎样看出模型的能力(比如GPT4和3.5到底差距在哪里)。这里会用GPT4、3.5、讯飞星火、百度一言做一些对比。一般对我们普通人来说,主要判断大模型是否可以真正帮助你,三个方面:基础能力、职场能力、探索对话。首先是基础能力,主要指语言模型应有的能力(即语言(文本)生成和语言理解。如果基础能力效果不达标,则判断为不可用。目前这四个应该都没大问题,都属于基础能力不错的模型。1级别(常识类问题):这些问题旨在测试模型的基本语言理解能力,例如:什么是人类?2级别(分词类问题):这些问题旨在测试模型的基本语言处理能力,例如:“我爱北京天安门”这句话的分词结果是什么?

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
国内外的智能体平台都有哪些?尽可能罗列出来
国内外的智能体平台有: 国内:Dify.AI、字节扣子、腾讯元器。 需要注意的是,个人比较常用的国内智能体平台是字节扣子,相关文章主要对比了字节扣子和腾讯元器。智能体相当于个人的数字员工,可以不断提效,帮助实现制定的目标,这和现实中老板给员工下达任务有相似之处。
2024-08-31
如果要创建一个和你一样的ai,你可以把技术栈给我罗列出来吗,从数据库到后端到前端分别用到了哪些技术
如果要创建一个类似我的 AI ,以下是从数据库到后端到前端可能用到的技术栈: 前端:推荐使用 React.js 或 Vue.js 框架,它们适合构建动态的用户界面,且有丰富的组件库支持多媒体内容展示。 后端:采用 Node.js 加上 Express.js ,能使用 JavaScript 同时开发前端和后端,简化开发过程,Node.js 的非阻塞 IO 特性适合处理实时通讯需求。 数据库:选择 MongoDB ,对于可能需要存储的文档形式数据(如离谱生物档案和相关事件),它在存储此类灵活数据方面表现良好。 语音处理:可以考虑使用 Google Cloud SpeechtoText 和 TexttoSpeech API 来实现语音与文本的相互转换,以支持语音对话。
2024-08-25
帮我把关于agent的知识全部列出来
以下是关于 Agent 的一些知识: 什么是 Agent:Agent 是执行特定任务的 AI 实体,可以迭代运行并拥有复杂的工作流程,可以自我对话,无需人类驱动每一部分的交互。 Agent 的组成:LLM(核心大脑)、Memory(记忆)、Planning Skills(任务规划)以及 Tool Use(工具使用)。 Agent 的案例:斯坦福 25 人小镇。 Agent 构建平台: Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 斑头雁:一个 2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景。 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。
2024-05-13
使用coze提取包含我指定的几个关键词的小红书内容数据进行汇总及分析
以下是关于使用 Coze 提取包含指定关键词的小红书内容数据进行汇总及分析的相关内容: 首先,在“一枚扣子:Coze 应用+多维表格的高速数据分析”中提到: 1. 需求是根据博主链接获取笔记并自动写入多维表格,然后进行批量分析。 2. 完成后端准备工作后,需找到博主地址,批量读取笔记并写入多维表格的 note_url 列。 3. 打开 Coze 创建应用,可选择 PC 模式,需要几个参数如多维表格地址、数据表名、小红书博主首页地址。 4. 设计读取博主笔记列表的工作流,包括创建应用、开发工作流等步骤。工作流实际上只有读取、转换、写入三步,开始节点设置三个参数,第二步需进行数据转换,添加代码节点,最后在插件市场选择多维表格插件并配置参数。 其次,在“舆情管理大师汽车 bot 小队.pptx”中: 1. 提到采集结果实时更新、智能总结链接内容、智能打分辅助判断等功能。 2. 构建高效数据流转体系,包括数据入表、关键词库等。 3. 任意关键词的工作流都适配,只需要调整 prompt。 最后,在“一枚扣子:2.0Coze 应用+多维表格+数据分析”中: 1. 介绍了配置管理,通过用户变量保存设置用于其他工作流。 2. 编排工作流,在开始节点添加变量接收 UI 输入的配置参数。 3. 包括账号分析、关键词/赛道分析等工作流,基础工作流用于查询,同步数据工作流涉及代码节点。 综上所述,使用 Coze 提取小红书内容数据进行汇总及分析需要创建应用、配置参数、设计工作流,并结合多维表格等工具实现相关功能。
2025-03-25
使用coze提取小红书数据进行汇总及分析
以下是关于使用 Coze 提取小红书数据进行汇总及分析的相关内容: 一、使用 Coze 应用与多维表格结合 1. 准备工作 完成后端准备工作。 2. 创建应用 打开 Coze,创建应用,可选择 PC 模式。 需要几个参数:多维表格地址、多维表格对应的数据表名、小红书博主首页地址。 界面设计为三个输入框和一个按钮。 3. 开发工作流 设计读取博主笔记列表的工作流,切换到业务逻辑,新建工作流。 工作流包括读取、转换、写入三步。 开始节点设置三个参数,分别代表多维表格地址、表名称、博主首页地址。 第一步选读取作者笔记的插件,将开始节点的 auth_link 关联到 userProfileUrl。 第二步的节点需要把数据转换为符合多维表格插件接收的数据格式,添加代码转换节点并复制代码。 在插件市场搜索官方的多维表格插件,选择 add_records 并分配配置参数。 结束节点配置一个值。 二、使用 Coze 智能体(字段捷径)获取笔记+评论信息 1. 创建智能体 使用单 Agent 对话流模式。 2. 编排对话流 点击创建新的对话流并与智能体关联。 配置两个小红书插件,在获取笔记详情节点和笔记评论节点分别配置 cookie,note_link 使用开始节点的 USER_INPUT。 使用代码节点对两个插件获取的结果进行数据处理。 3. 测试 找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 回到智能体的编排页面进行测试,确保对话流执行成功。 4. 发布 点击发布,选择多维表格,然后进行配置。 输出类型选文本,输入类型选字段选择器。 完善上架信息,填写表格,选择发布范围。 三、总结 1. 仿写分析的操作与问题处理 新增仿写表,确定字段。 执行仿写动作。 设置字段与评级。 添加智能标签。 处理数据错误。 2. AI 相关内容的分享与讲解 数据提取分析。 潜力笔记判断。 爆款笔记仿写。 3. 社区资源获取 相关文档、代码、教程放在社区,可通过 3W 点 vtwoagi.com 直达飞书知识库,关注公众号找小伙伴获取进群二维码。 4. 活动消息介绍 扣子老师的开发版与硬件结合活动,3 月 22 号或 23 号将在另一城市举办,消息后续发给大家。
2025-03-25
AI如何结合业务数据,输出一些汇总表格?
AI 结合业务数据输出汇总表格通常需要以下步骤: 1. 数据收集与整理:首先,需要收集相关的业务数据,并对其进行清洗和预处理,以确保数据的质量和一致性。 2. 选择合适的 AI 技术和工具:根据数据特点和业务需求,选择适合的 AI 算法和工具,如机器学习中的分类、回归算法,或者数据挖掘工具等。 3. 数据建模:运用选定的 AI 技术对数据进行建模,建立能够分析和处理数据的模型。 4. 训练模型:使用预处理后的数据对模型进行训练,不断优化模型的参数,以提高模型的准确性和性能。 5. 数据应用与输出:将训练好的模型应用于新的数据,生成分析结果,并将结果以汇总表格的形式进行输出。 在实际操作中,还需要注意数据的安全性和隐私保护,以及对模型结果的评估和验证,确保输出的汇总表格准确、有用且符合业务需求。
2025-03-14
语音转文本,能识别不同人声,并将文本进行总结汇总,行程纪要或思维导图等
以下是为您提供的相关信息: ElevenLabs 发布了全球最精准的语音转文字模型 Scribe,它支持 99 种语言,语音转录准确率超越 Gemini 2.0 和 OpenAI Whisper v3,可识别 32 个不同说话者,并标记笑声、鼓掌等非语言元素,提供单词级时间戳,方便字幕同步和音频编辑,输出结构化 JSON,便于开发者集成。相关链接: 另外,为您推荐以下在线 TTS 工具: 1. Eleven Labs:https://elevenlabs.io/ ,ElevenLabs Prime Voice AI 是一款功能强大且多功能的 AI 语音软件,使创作者和出版商能够生成逼真、高品质的音频。人工智能模型能够高保真地呈现人类语调和语调变化,并能够根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,Speechify 是一款人工智能驱动的文本转语音工具,使用户能够将文本转换为音频文件。它可作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,可用于收听网页、文档、PDF 和有声读物。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,Microsoft Azure Speech Studio 是一套服务,它赋予应用程序能力,让它们能够“听懂、理解并与客户进行对话”。该服务提供了支持 100 多种语言和方言的语音转文本和文本转语音功能。此外,它还提供了自定义的语音模型,这些模型能够适应特定领域的术语、背景噪声以及不同的口音。 4. Voicemaker:https://voicemaker.in/ ,AI 工具可将文本转换为各种区域语言的语音,并允许您创建自定义语音模型。Voicemaker 易于使用,非常适合为视频制作画外音或帮助视障人士。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-07
AI工具汇总
以下是一些常见的 AI 工具汇总: 创作方面: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 图片处理:DallE、Leonardo、BlueWillow、Midjourney 版权写作:Rytr、Copy AI、Wordtune、Writesonic 设计:Canva、Clipdrop、Designify、Microsoft Designer 网站搭建:10Web、Framer、Hostinger、Landingsite 视频处理:Klap、Opus、Invideo、Heygen 音频处理:Murf、LovoAI、Resemble、Eleven Labs SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope Logo 设计:Looka、LogoAI、Brandmark、Logomaster 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 自动化工具:Make、Zapier、Bardeen、Postman 市场营销 相关资讯: Writerbuddy AI 分析了 3000 多种 AI 工具,选出访问量最大的 50 个工具,共产生超过 240 亿次访问量,ChatGPT 独占 140 亿流量,占 60%,AI 行业每月增长 2.363 亿访问量,50 个工具增长率达 10.7 倍。 AI 用户的地理分布方面,美国领先,印度和东南亚国家紧随其后,中国 AI 用户未进前 20,可能因本土工具和监管环境,欧洲合计 39 亿访问量,占 16.21%。 MotionGPT 发布,这是多模态运动语言模型,可以通过文字聊天生成逼真的人体运动,并发布了演示视频。 多邻国因 AI 翻译能力解雇大量翻译合同工,前员工证实被解雇,剩余人员审查 AI 内容。 Radishes 是开源无版权音乐平台,支持 Windows、macOS、Linux 和 Web,功能包括音乐搜索、下载、每日歌单推荐等。
2025-02-23
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
国外免费的动作模仿AI
以下为您介绍国外免费的动作模仿 AI: 在 SD 中,ControlNet 是一个强大的插件,包含姿态约束类预处理器。可以使用扩展图片的方法将图片发送到图生图进行处理,还能使用 tile 模型细化。若无法找到满足需求的动作图片,可在【扩展】【加载扩展列表】中搜索【posex】插件,或拷贝插件文件夹至指定目录并重启软件。在 ControlNet 界面,可通过拖动鼠标左键旋转视角、中键缩放视角、右键拖动视角,玩坏了还能重置镜头和动作。 Viggle 是一个有免费额度的 AI 视频工具,其网址为 http://viggle.ai,discord 免费体验地址为 https://discord.com/invite/viggle 。它支持图片+动作视频转视频、图片+文字动作描述转视频、文字转视频,可完成视频换脸。其功能包括/mix、/animate、/ideate、/character、/stylize 等,官方提供了多种动作提示词可供参考,提示词地址为 https://viggle.ai/prompt 。
2025-03-31
现在我想通过一段描述生成一段视频,那么我现在用哪一个?工具是最好的呢。我想说的是现在因为在国内访问不了国外的网站,那么国内有没有哪些应用比较功能强大的是视频生成工具。
以下是一些在国内可用且功能强大的视频生成工具: 1. VIGGLE:可以直接通过文字描述让任何静态图动起来,能做各种动作,如跳舞等。其核心技术基于 JST1 模型,能理解真实世界的物理运动原理,生成的视频很真实,还能直接文字生成视频,进行各种角色混合和动作替换。核心功能包括可控制的视频生成、基于物理的动画、3D 角色和场景创建。 2. Pika:非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 3. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。 4. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 5. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 6. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 此外,还有以下根据视频脚本生成短视频的工具: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:AI 视频生成器,允许用户轻松创建和编辑高质量视频,用户提供文本描述即可生成相应的视频内容。 4. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 5. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,您可以根据自己的具体情况进行选择。需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-03-23
有哪些国外免费的大模型API可以使用
以下是一些国外免费的大模型 API 可供使用: 1. 谷歌的 Gemini 大模型(https://ai.google.dev/)(gemini 1.5),但使用可能需要给服务器挂梯子。 2. 海外版 Coze(https://www.coze.com/)的 GPT4 模型,能图片识别,使用可能需要给服务器挂梯子。 此外,还有以下相关信息: 1. 阿里的通义千问大模型接口(https://dashscope.console.aliyun.com/),创建 API key 即可使用。 2. 智谱 AI(ChatGLM)(https://open.bigmodel.cn/)、科大讯飞(SparkDesk)(https://xinghuo.xfyun.cn/sparkapi)也有免费接口,但国内的大模型大多限制一定免费额度的 Token。 对于 OpenRouter 新发布的功能 BYOK(Bring Your Own API Keys),它是个第三方 Key 集成功能,将 xAI、OpenAI、Mistral 等数十个平台的 Key 集中在一起,目前支持白“赚”的平台包括 AI Studio/Cohere/DeepSeek/Mistral/SambaNova/Together/xAI 等。 以 silicon 为例,其有众多开源模型(Yi、Qwen、Llama、Gemma 等)免费使用,另赠送 14 元体验金,有效期未知,是个人认为 API 接口方便实惠的选择。注册和使用地址为:,邀请码:ESTKPm3J。注册登录后,单击左边栏的 API 密钥,单击新建 API 密钥,单击密钥即可完成 API 密钥的复制。
2025-03-19
我想整理现在国内和国外的大语言模型产品并需要你整理差异还有时间轴
以下是对国内外大语言模型产品的整理及差异: 国内大语言模型: 通用模型:如文心一言、讯飞星火等,能够处理自然语言。 垂直模型:专注于特定领域,如小语种交流、临床医学、AI 蛋白质结构预测等。 具有代表性的项目:“悟道・天鹰”(北京智源人工智能研究院)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型;文心一言(百度)可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 国外大语言模型: 具有代表性的项目:GPT4(OpenAI)是目前最先进的自然语言生成模型,可用于回答问题、撰写文章等;Gemini Ultra(Google)是多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等;Claude 3 Opus(Anthropic)是多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能,实现了接近完美的召回率。 时间轴方面: 国内:去年 7 月大模型百花齐放。 国外:相关模型也在不断发展和更新。 在工作原理上,大语言模型通常包括训练数据、算力、模型参数等要素。在训练数据一致的情况下,模型参数越大能力越强。Transformer 架构是大语言模型训练的常见架构,具备自我注意力机制能理解上下文和文本关联。同时,大模型可能存在幻觉,即因错误数据导致给出错误答案,优质数据集对其很重要。此外,Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 Prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。还可以基于通用大模型进行 Fine tuning 微调,以适应特定领域的需求。
2025-03-07
请以轨道式、巡检机器人为关键词查找国外文献十五篇,要求这些文献真实可靠并且有一定的影响力,同时附上原文链接
很抱歉,目前没有查找到以轨道式、巡检机器人为关键词的国外文献十五篇及原文链接。建议您通过以下途径进行查找: 1. 学术数据库,如 Web of Science、Scopus 等。 2. 相关领域的专业学术期刊网站。 3. 大学图书馆的电子资源库。
2025-03-06
国内有多少种网盘?自费如何?哪款网盘性价比较高?国外呢?
目前国内网盘种类众多,常见的有百度网盘、阿里云盘、腾讯微云等。其自费方式和价格各有不同。百度网盘的收费套餐多样,根据存储空间和功能有所区别;阿里云盘也有相应的付费方案;腾讯微云同样提供多种付费选择。 关于哪款网盘性价比较高,这取决于您的具体需求。如果您对存储空间需求较大,阿里云盘可能是一个不错的选择;如果您更注重资源的丰富性和分享的便捷性,百度网盘可能更适合。 国外的网盘也有不少,如 Dropbox、Google Drive 等,但在国内使用可能存在网络限制等问题。
2025-02-25