Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

表格内填充的内容如何批量循环调用大模型生成内容

Answer

以下是关于表格内填充内容如何批量循环调用大模型生成内容的相关信息:

  • 大模型生成文字并非一次性输出整段,而是通过反复调用神经网络模型,一个字一个字地续写,直到输出结束符号。其输出不是确定的一个字,而是所有字的概率,可选择概率高的字或随机挑选。
  • 在生成标题、导语、大纲等涉及文本理解与创作的任务时,可通过配置 LLM 节点来实现。为节省 token 消耗和模型调度费用,在满足预期的情况下,应减少大模型处理环节。例如,豆包·function call 32k 模型能在一轮对话中稳定生成这些内容。配置时要关注节点的各项设置,如根据实际情况调大模型的最大回复长度,并设计填入用户提示词。
Content generated by AI large model, please carefully verify (powered by aily)

References

一个希望有点意思的AI分享(二)

从PPT里可以看到,这个神经网络大模型其实只做一件事,就是根据输入的文字,预测下一个字是什么。你输入台湾大,它会预测学。如果你输入的已经是完整的一段文字带有句号,那么它会预测下一个应该是结束。所以,大模型生成文字的过程,并不是一次性输出整段,而是通过一次又一次反复的调用同一个神经网络模型,一个一个字的往后续写,直到输出结束符号为止。你可能想到,一段文字的下一个字会有多种可能性,事实上,大模型的输出并不是一个字,而是所有字都输出一个概率。你可选择最高概率的或者第二高的汉字作为输出结果,你更可以从前几名当中随机挑选。也正是由于这样,现在AI生成的文章才能体现出这么多的创意性。这么做的一大好处是,我们几乎可以将任何网络上的文本直接当作训练素材来训练我们的神经网络模型。因为我们可以把任意一段文字的前几个字作为输入,而下一个字作为答案用做训练素材。这使得我们可以非常方便的得到大量的训练素材。而AI也是通过这种方式,“读”过了当前网络上几乎所有的文字资料。这种“预测下一个词”的行为可以看作是一种信息压缩。AI将它看过的所有文章压缩在了它的上亿参数中。当然,你或许发现了,既然是预测,那么它就不一定保证正确。它只是根据它看过的海量资料的“印象”猜了一个结果。事实上,这一点也很像人类,其实人类自己也无法保证记忆的正确性。另外,这种预测下一个字的方式可以拓展到图像、声音等等领域,只要定义好“下一个”是什么信号即可。当前的AI也正是类似这样学会处理图像、声音等等信息的。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在生成标题、导语、大纲时,因为只涉及文本理解与文本创作,很明显这是LLM节点的工作,所以我们需要对LLM节点进行配置。可能你在1.2分解子任务那个章节就想问:为什么不把“标题、导语、大纲”拆得更细,比如分成生成标题、生成导语和生成大纲3个子任务?——因为LLM是按输入/输出的字符数量来消耗token,在满足预期的情况下,更少的大模型处理环节,能有效减少token消耗,在实际投产时节省模型调度费用。经过实测,豆包·function call 32k模型,已经能在一轮对话中稳定地生成这三项内容了。每个大模型节点的配置项很丰富,对于入门用户来说,主要关注:在“标题、导语、大纲”节点中,我们希望LLM能够从开始节点,接收到原文信息,经过处理后,一次性把我们需要的中文标题、中文导语、英文标题、英文阅读大纲生成输出。所以设置如下:另外,为了保证大模型能够处理足够长的内容,需要视实际情况调大模型的最大回复长度:最后,根据1.3设计每个子任务的执行方法中的内容模块要求,设计并填入以下用户提示词(本文主要讨论工作流的设置,就不论述这个提示词具体是如何设计的了,感兴趣的可以单独和我聊):

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在生成标题、导语、大纲时,因为只涉及文本理解与文本创作,很明显这是LLM节点的工作,所以我们需要对LLM节点进行配置。可能你在1.2分解子任务那个章节就想问:为什么不把“标题、导语、大纲”拆得更细,比如分成生成标题、生成导语和生成大纲3个子任务?——因为LLM是按输入/输出的字符数量来消耗token,在满足预期的情况下,更少的大模型处理环节,能有效减少token消耗,在实际投产时节省模型调度费用。经过实测,豆包·function call 32k模型,已经能在一轮对话中稳定地生成这三项内容了。每个大模型节点的配置项很丰富,对于入门用户来说,主要关注:在“标题、导语、大纲”节点中,我们希望LLM能够从开始节点,接收到原文信息,经过处理后,一次性把我们需要的中文标题、中文导语、英文标题、英文阅读大纲生成输出。所以设置如下:另外,为了保证大模型能够处理足够长的内容,需要视实际情况调大模型的最大回复长度:最后,根据1.3设计每个子任务的执行方法中的内容模块要求,设计并填入以下用户提示词(本文主要讨论工作流的设置,就不论述这个提示词具体是如何设计的了,感兴趣的可以单独和我聊):

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
我是一个实体店家,我怎么能利用AI产生内容进而帮助我在流量平台拓客
以下是一些利用 AI 为实体店在流量平台拓客的方法和思路: 1. 借助抖音平台:利用抖音对实体商家的流量扶持,购买 AI 抖音发广告的软件。这需要懂软件开发的技术人员,并且熟悉抖音。 2. 利用 AI 私域做客户培育/用户旅程:通过 AI 软件自动跟进和培育客户,需求是懂软件开发的技术人员且熟悉微信。 3. 打造特定领域的 AI 工具:比如针对法律、健康、财务、教育、销售、HR 等领域,开发如“AI 合同助手”“AI 健康管家”“AI 课程生成器”“AI 销售助理”等垂类工具。 4. 作为引流者:把 AI 工具做成“公众号插件”“小程序入口”或“微信机器人”进行推广,获取分成。 5. 参考优秀作品:如商业综合体 AI 伴侣、客流诊断师、跨境商品不求人、公私域全流程内容规划师、公众号 10W+爆文工厂、营销内容文案合规检查、提示词定制神器、Nicole 咖啡门店分析师、3C 软文文案撰写、网购评论助手、万能 AI 营销助手、贴心平替推荐精灵、产品一键生成一篇高质量的知乎种草文、One thing AI 目标达成教练、润物等,从中获取灵感和思路。
2025-04-15
如何识别网页内容
识别网页内容通常可以通过以下步骤实现: 1. 内容识别:使用智能算法分析网页的 HTML 结构,确定网页的主要内容区域。 2. 文本提取:在识别出内容区域后,提取这些区域的文本内容,包括从 HTML 标签中获取可见文本,同时忽略脚本、样式和其他无需翻译的代码。 3. 预处理:对提取出的文本进行处理,清除不必要的空格、特殊字符和格式信息,进行标准化。 4. 翻译调用:将预处理后的文本拼接到 Prompt 模板中请求相关模型的 API 进行翻译。 5. 结果整合:翻译完成后,将原文和译文对照整合回网页、字幕中,常见的展示形式有原文保持不变,译文以悬浮框、下划线注释或平行文本呈现。 6. 用户界面交互:用户可通过鼠标悬停、点击等操作控制翻译的显示与否,工具会根据用户操作实时显示或隐藏译文。 另外,在获取网页内容时,初版提示词实验中对大模型对话产品的外链解析能力依赖较大,但这种方式易受平台反爬机制制裁。转换思路,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定且经济的解决方案。开发时,可拿着初版提示词询问 AI 来确定需要插件获取哪些网页元素。例如 SeeAct 能力可以在多种不同网站上识别网页上的各种元素,执行不同任务。
2025-04-15
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
mcp 的内容
MCP(模型上下文协议)是一种创新的开放协议,由 Anthropic 公司在 2024 年 11 月推出并开源。 其主要特点和功能包括: 统一了交互标准,是链接所有 AI 应用与工具的桥梁,兼容所有 AI 应用。 具有三大功能:工具(Tools),底层使用 Function call 实现,与 OpenAI 格式兼容;资源(Resources),为 AI 提供参考信息;提示词(Prompts),预设对话模板。 主要接口路径包括获取工具列表、调用工具、获取资源列表、读取资源内容、获取提示词列表、获取提示词内容等。 转换步骤包括客户端向 MCP 服务器请求工具列表,将 MCP 工具定义转换为 Function call 格式,发送 Function Call 定义给 LLM,接收 LLM 生成的 Function call,将 Function call 转为 MCP 工具调用,发送工具调用结果给 LLM。 MCP 就像一个“转接头”或“通用插座”,其核心作用是统一不同外部服务,通过标准化接口与 AI 模型对接。它与传统 API 的关键区别在于: 单一协议:MCP 像一个统一接口,只要一次整合,就能连接多个服务。 动态发现:AI 模型能自动识别并使用可用的工具,不用提前写死每个接口。 双向通信:MCP 支持类似 WebSockets 的实时双向通信,模型不仅能查询数据,还能主动触发操作。 MCP 最早由 Anthropic 公司开发,目的是帮助 AI 模型(如 Claude)更容易地连接工具和数据源,现在已成为一个开放协议,被越来越多的企业和开发者采用,逐渐成为 AI 与工具互动的新标准。 官方文档:https://modelcontextprotocol.io/
2025-04-13
知识库中的LangChain和LangGraph的内容有哪些 ?
以下是关于 LangChain 和 LangGraph 的相关内容: LangChain: LangChain 是一个由 Harrison Chase 开发的开源 Python 库,旨在支持使用大型语言模型(LLM)和外部资源(如数据源或语言处理系统)开发应用程序。 它提供了标准的接口,与其他工具集成,并为常见应用程序提供端到端链。 设计主张集中在模块化组件上,这些组件提供用于使用 LLM 的行为抽象,并为每个抽象提供实现的集合,从而允许开发人员构造新链或实现现成的链。 LangChain 和 RAG 的关系: LangChain 是一个用于构建高级语言模型应用程序的框架,提供了实现 RAG 所必需的工具和组件。 RAG 即检索增强生成,是一种结合了检索(检索外部知识库中相关信息)和生成(利用 LLM 生成文本)的技术。 LangChain 作为框架,与 RAG 的关系包括:是框架与技术的关系,允许通过模块化组件构建 RAG 应用程序,简化开发过程,提高性能,支持构建复杂的 RAG 应用。 关于大模型 RAG 应用中的 LangChain: 有从产品视角出发的分享,包括项目背景、初步体验和评测结果等。 预计会分成 3 篇分享,分别是 LangChain 框架初体验、调优思路分享、如何测评。
2025-04-12
ai如何什么生成表格
AI 生成表格通常可以通过以下技术实现: 1. 利用变分自编码器(VAEs)和序列到序列模型(Seq2Seq)等技术生成表格文件、表格公式,并清理、创建、转换和分析表格中的文本数据,例如表格结构设计、数据分析表、表格自动化等。 2. 借助一些办公软件中的 AI 插件,如飞书中的相关插件,先通过 AI 理解图片中的内容并填充到表格列中,然后利用自带插件总结生成相关指令。 此外,在多模态数据生成中,结构化数据生成包括表格生成,多模态合成数据从大类来看有非结构化数据(图片、视频、语音等)和结构化数据(表格等)两大类。非结构化数据生成包括文本生成、图像生成、音频和语音生成、视频生成、3D 生成、合成数据生成等。
2025-04-14
处理 excel 表格 的 AI 工具
以下是一些可用于处理 Excel 表格的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合了 Word、Excel、PowerPoint 等办公软件的 AI 工具,通过聊天形式,用户告知需求后,Copilot 会自动完成任务,如数据分析或格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 5. Ajelix:可处理 Excel 和 Google Sheets 表格的 AI 工具,链接为。 6. FormX.ai:能够自动从表格和文档中提取数据的 AI 工具,链接为。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。内容由 AI 大模型生成,请仔细甄别。
2025-04-11
飞书多维表格+deepseek可以干什么
飞书多维表格和 DeepSeek 结合可以实现以下功能: 1. 打造专属的好文推荐网站:当您阅读到好文章时,可以一键存储到飞书多维表格,经过 AI 处理,自动在您的博客网站上呈现出来。实现该功能需要以下步骤: 创建带有 AI 能力(以 DeepSeek R1 为主)的飞书多维表格。 使用 Trae 生成网页,呈现多维表格的内容。 使用 Trae 生成浏览器插件,一键存入多维表格。 2. 批量处理信息,提升工作效率:用户可以批量转换文风、快速回复消息,甚至利用 AI 生成文案,操作简单、便捷。 3. 为非技术人群提供便捷的 AI 应用:普通人无需编程知识也能轻松使用 AI。
2025-04-10
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
利用飞书多维表格,做一个类似于客服机器人 可以怎么做?
利用飞书多维表格做一个类似于客服机器人,可以按照以下步骤进行: 1. 创建一个拟人化的 bot,比如起名叫青青,设定其为人设是一个可爱有趣的少女,擅长回答各种刁钻的问题。完成 BOT 捏好后点击发布。 2. 发布时配置飞书多维表格: 输出为文本时,第一步配置为文本。 配置多维表格输入表单,选择用控件的字段选择器,给字段标题随便起个名字如“question”。 在完善捷径的商家信息这里,可以选择全量发布,也可以选择仅自己可用。为了审核快一些,可以选择仅自己可用。等审核通过之后,就可以在飞书多维表格里面看到发布成功。 3. 还可以探索字段捷径的各种玩法(不含 bot),比如直接创建一个多维表格,第一列是几个成语,第二列是 AI 字段捷径生成的对成语的解释。左边输入一列,比如一列成语,右边配置 AI 字段。 此外,还有一些相关信息供您参考: “Show Me 扣子 AI 挑战赛大消费行业专场圆满落幕,探索 AI 与大消费行业的深度结合”中提到了一些相关作品,如帮助企业快速建立产品智能客服体系、ERP 高智版:扣子销售订单管理大师、亚马逊商品评论智析、AI 电商设计师等。 2024 年历史更新(归档)中包含了关于飞书多维表格字段捷径配置 COZE 的 BOT 青青的相关内容。
2025-04-08
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
写一个框架后,自动填充内容的ai工具
当然,以下是一些可以自动填充内容的AI工具: 1. Jarvis AI Jarvis AI是一个强大的AI写作工具,可以帮助您自动生成各种类型的文本内容,例如文章、博客文章、社交媒体帖子、电子邮件等。它可以根据您的输入生成不同的创意文本格式,并提供多种风格和语气选项。 2. Rytr Rytr是一个AI写作工具,可以帮助您快速生成高质量的文本内容。它可以用于各种目的,例如撰写广告文案、创建产品描述、编写博客文章等。Rytr还提供多种语言选项,可以帮助您面向全球受众。 3. Copy.ai Copy.ai是一个AI写作工具,可以帮助您克服写作障碍并生成引人入胜的文本内容。它提供多种模板和工具,可以帮助您创建各种类型的文本内容,例如广告文案、销售页面、登陆页面等。Copy.ai还提供实时反馈,可以帮助您提高写作质量。 4. ShortlyAI ShortlyAI是一个AI写作工具,可以帮助您快速将长篇文本缩短为更易于阅读和理解的格式。它可以用于各种目的,例如生成摘要、创建幻灯片、编写新闻稿等。ShortlyAI还提供多种语言选项,可以帮助您翻译文本。 5. Writesonic Writesonic是一个AI写作工具,可以帮助您生成各种类型的营销文案,例如广告文案、销售页面、登陆页面、电子邮件等。它提供多种模板和工具,可以帮助您创建引人入胜的文本内容并提高转化率。Writesonic还提供实时反馈,可以帮助您提高写作质量。 如何选择合适的AI工具? 在选择合适的AI工具时,您需要考虑以下因素: 您的需求: 您需要AI工具来做什么?您需要生成什么样的文本内容? 您的预算: 不同AI工具的价格各不相同。您需要选择一款符合您预算的工具。 工具的功能: 不同AI工具的功能各不相同。您需要选择一款具有您所需功能的工具。 工具的易用性: 您是否容易使用AI工具?您需要选择一款易于使用的工具。 希望以上信息对您有所帮助。如果您还有其他问题,请随时提出。
2024-05-11
小红书图文批量生成
以下是关于小红书图文批量生成的详细内容: 流量密码!小红书万赞英语视频用扣子一键批量生产,这是一个保姆级教程,小白都能看得懂。 原理分析: 决定搞之后,思考生成这种视频的底层逻辑,进行逆推。这种视频由多张带文字图片和音频合成,带文字图片由文字和图片生成,文字和图片都可由 AI 生成,音频由文字生成,文字来源于图片,也就是说,关键是把图片和文字搞出来。 逻辑理清后,先找好看的模版,未找到好看的视频模版,最后看到一个卡片模版,先把图片搞出来,才有资格继续思考如何把图片变成视频,搞不出来的话,大不了不发视频,先发图片,反正图片在小红书也很火。 拆模版: 要抄这种图片,搞过扣子的第一反应可能是用画板节点 1:1 去撸一个,但扣子的画板节点很难用,Pass 掉。用 PS 不行,太死板不灵活,html 网页代码可以,非常灵活。经过 2 个多小时和 AI 的 battle,用 html 代码把图片搞出来了。这里不讲代码怎么写,直接抄就行。要抄,首先要学会拆,不管用什么方式批量生成这样的图片,都必须搞清楚里面有哪些是可以变化的参数,也就是【变量】,如主题、主题英文、阶段、单词数、图片、正文、翻译、普通单词、重点单词等。 想方法: 大概知道批量生成这样的图片需要搞清楚哪些参数,图片用 html 代码搞出来了。但问题是视频怎么搞,这种视频由多张不同的【带文字的图片】生成,比如读到哪句,哪句就高亮起来,图片也可以随着读到的句子变更。最后,视频就是用这样的图片一张张拼起来的。
2025-04-14
知识库的批量创建和调用
以下是关于知识库的批量创建和调用的详细信息: 使用知识库: 在 Bot 内使用: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,包括最大召回数量、最小匹配度和调用方式(自动调用或按需调用)。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 创建知识库并上传表格数据: API 方式: 1. 在表格格式页签下,选择 API,然后单击下一步。 2. 单击新增 API。 3. 输入网址 URL 并选择数据的更新频率,然后单击下一步。 4. 输入单元名称或使用自动添加的名称,然后单击下一步。 5. 配置数据表信息后,单击下一步。 5.1 确认表结构:系统已默认获取了表头的列名,您可以自定义修改列名,或删除某一列名。 5.2 指定语义匹配字段:选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 6. 查看表结构和数据,确认无误后单击下一步。 7. 完成上传后,单击确定。 自定义方式: 1. 在表格格式页面下,选择自定义,然后单击下一步。 2. 输入单元名称。 3. 在表结构区域添加字段,单击增加字段添加多个字段。 4. 设置列名,并选择指定列字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 5. 单击确定。 6. 单击创建分段,然后在弹出的页面输入字段值,然后单击保存。 创建文本型知识库: 目前支持 5 种导入类型:本地文档、在线数据、notion、飞书、自定义。 在线数据: 自动采集:支持从单个页面或批量从指定网站中导入内容。 添加单个页面的内容: 1. 添加方式:选择添加单个。 2. 更新频率:选择是否自动更新指定页面的内容及自动更新的频率。 3. 网址 URL:输入要采集内容的网址。 批量添加网页内容: 1. 添加方式:选择批量添加。 2. 根地址或网站地图:输入要批量添加的网页内容的根地址或 sitemap 地址,然后单击导入。 3. 导入成功后,单击确认。 手动采集:支持标注要采集的内容,内容上传成功率高。使用手动采集方式,需要先安装浏览器扩展程序。安装步骤,参考。 1. 在新增 URL 页面,选择手动采集。 2. 在弹出的页面输入要采集内容的网址,然后单击确认。 3. 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 4. 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。
2025-04-09
怎么用AI标准化批量生产内容
以下是关于如何用 AI 标准化批量生产内容的详细指导: 一、需求分析 在批量制作单词卡片时,为降低人工成本和节约时间,选用搞定设计来批量产图。因为其对新手友好,且借助 AI 加成模板容易制作。 二、提示词编写测试 1. 完整提示词:核心是生成符合要求的单词卡内容并将其填入 Excel 文件中,需给出基本示例和规则限制。 2. 测试结果:一次输入多个单词可同时解析,虽效果有差异但大体格式符合要求,部分设定有改变,可通过复制粘贴调整。 三、批量产出 1. 准备压缩格式的文件(如 zip、rar、7z),内含放置内容的 Excel 文档,格式固定。 2. 利用 ChatGPT 生成单词内容并整理填入 Excel。 3. 上传压缩文件,完成套版,获得符合要求的单词卡片。 此外,在测试 AI 视频产品模型 txt2vid、img2vid 能力时,撰写提示词通常基于特定结构,也可让 Claude 等大模型协助,参考“我正在测试 Runway、Luma 等视频生成产品对文本的语义理解能力和视频生成效果,现在需要你帮我写几段提示词。提示词需要满足:主体物+场景+运动内容+相机视角+氛围描述的基本内容描写,请分别给出中英文提示词内容。”今年 AI 技术进步迅速,图像、视频生成主要解决素材生产问题,各产品在数据集、模型能力等方面竞争,AI 功能的打磨需要团队多方面精心投入,对使用者综合能力要求高。
2025-04-09
AI 自动安排批量设置工作任务的个人效率 app 推荐
目前在市场上,有一些可以实现 AI 自动安排批量设置工作任务以提升个人效率的应用程序,以下为您推荐几款: 1. Todoist:它具有强大的任务管理功能,支持设置优先级、提醒和分类,能帮助您合理规划工作任务。 2. Microsoft To Do:与微软生态系统紧密集成,方便您在不同设备上同步任务,并进行批量设置。 3. Trello:以看板的形式展示任务,直观清晰,便于批量安排和跟踪工作进度。 您可以根据自己的需求和使用习惯选择适合您的应用程序。
2025-04-07
AI 自动安排批量设置工作任务的效率工具。
以下是关于 AI 自动安排批量设置工作任务的效率工具的相关内容: 对于中小企业利用人工智能(AI)进行转型,在任务自动化方面: 首先要评估和识别日常重复性高的任务,通过分析工作流程、观察和记录员工工作,确定耗时且重复性高的活动,明确通过观察和记录要达成的具体目标,如提高效率、减少错误率等,计划和安排对员工日常工作的观察,与员工交谈了解其看法,分析收集的数据以确定可优化的任务,并制定引入新工具等具体行动计划。 最后引入自动化工具,如 RPA 技术,根据企业需求和预算选择合适工具,在 IT 系统中部署并配置,进行测试和调整优化。 适合工作流化的业务一般具备以下特点: 重复性工作多,业务中的任务或流程高度重复。 业务流程固定,步骤相对固定,且具有标准化的操作流程。 以自媒体工作者为例,常见工作流步骤包括内容策划、创作、编辑、审核、发布、互动和效果分析优化等,通过 AI 标准化这些步骤并利用工具自动执行,可提高效率,让工作者有更多时间和精力专注核心业务。 一般来说,Workflow 是一系列相互连接的步骤,旨在完成特定任务或目标。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流会利用大模型等 AI 技术,被称为 AI Workflows,可分为 Agentic 和非 Agentic 。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,以实现特定任务或目标,AI Agents 被授予权限,利用其核心组件将传统工作流转变为响应式、自适应和自我进化的过程。
2025-04-07
我需要批量对比两版教材中具体文字和插图的变化调整,该使用什么ai工具最合适
对于批量对比两版教材中具体文字和插图的变化调整,目前没有直接针对此需求的特定 AI 工具。但您可以考虑以下几种方式和相关工具来实现类似的功能: 1. 利用自然语言处理技术,如使用 ChatGPT 等语言模型,辅助您对教材的文字内容进行分析和比较,但可能需要您对结果进行进一步的整理和判断。 2. 对于插图的对比,可以尝试使用图像编辑软件,虽然不是专门的 AI 工具,但通过手动操作和一些辅助功能,也能在一定程度上进行比较和分析。 3. 如果您具备一定的编程能力,可以考虑使用相关的图像处理库和自然语言处理库,自己开发一个简单的对比工具。 另外,在一些工作场景中,如批量制作单词卡片,可以使用搞定设计来批量产图,并结合 ChatGPT 辅助生成和整理内容。在图像生成和处理方面,Stable Diffusion 可以用于图像的生成、修改和局部重绘等操作。
2025-04-01