Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型、小模型之间的区别和联系是什么

Answer

大模型和小模型的区别与联系如下:

  • 区别:
    • 类型:大模型主要分为大型语言模型和大型多模态模型,前者专注于处理和生成文本信息,后者能处理包括文本、图片、音频等多种类型的信息。
    • 应用场景:大型语言模型主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等;大型多模态模型可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。
    • 数据需求:大型语言模型主要依赖大量文本数据训练,大型多模态模型则需要多种类型的数据,包括文本、图片、音频等。
    • 功能:小模型通常被设计来完成特定任务,如专门识别猫或狗;大模型像多功能的基础平台,能处理多种不同任务,应用范围广泛,拥有更多通识知识。
  • 联系:
    • 相对比较:小模型是相对于大模型的规模而言较小。
    • 共同作用:在不同场景中发挥各自的优势,共同为解决问题提供支持。

在 AI 绘图模型中,大模型如同主菜或主食,小模型(Lora)如同佐料或调料包,Lora 能帮助快速实现特定风格或角色的绘制,且大模型和 Lora 要基于同一个基础模型才能搭配使用,以生成各种风格的图片。

Content generated by AI large model, please carefully verify (powered by aily)

References

十七问解读生成式人工智能

大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,这类模型能够处理包括文本、图片、音频等多种类型的信息。[heading1]问题八、大型多模态模型与大型语言模型有何不同?[content]1.二者处理的信息类型不同。大型语言模型专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。而大型多模态模型不仅能处理文本信息,还能理解和生成图片、音频等多种类型的信息,这使得它们能够在更多样化的任务中应用。2.应用场景也有所不同。大型语言模型主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等。而大型多模态模型由于能够处理多种信息类型,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。3.在数据需求方面也有所不同。大型语言模型主要依赖于大量的文本数据进行训练,而大型多模态模型则需要多种类型的数据进行训练,包括文本、图片、音频等,以便在不同模态间建立关联。[heading1]问题九、有了大模型,是不是还有小模型?[content]当我们谈论所谓的“小模型”时,实际上是在相对地比较。与那些拥有海量参数和训练数据的大型模型相比,这些模型的规模显得更小一些。因此,在日常交流中,我们习惯将它们称作“小模型”。但如果要更精确地描述,这些模型其实是被设计来完成特定任务的,比如最初用于图像分类的模型,只能分辨是或不是某一个东西(比如猫?、狗?)。

十七问解读生成式人工智能

“小模型”确实有其优势,尤其是在特定任务上表现得非常出色。比如,如果你训练了一个专门识别猫?或狗?的模型,它在这个任务上可能非常精准。然而,这个模型就无法用于其他任务(因为用来训练模型的数据主要是由猫猫狗狗的照片组成的)。而“大模型”则不同,它像一个多功能的基础平台(有时也被称为“基座模型”)。大模型可以处理多种不同的任务,应用范围非常广泛,并且拥有更多的通识知识。这就是为什么尽管“小模型”在某些特定领域内表现优异,我们仍然需要“大模型”的原因:它们能够在更广泛的场景中提供支持和解决问题。[heading1]问题十一、大模型拥有无限知识吗?[content]大模型并不拥有无限知识。大模型的知识来源于它们在训练过程中接触到的数据,而这些数据是有限的。虽然大模型可以处理和生成大量的信息,但它们的知识来自于它们所训练的数据集,这些数据集虽然庞大,但仍然是有限的。因此,大模型只能回答它们在训练过程中见过或类似的问题。大模型在训练之后,其知识库不会自动更新。也就是说,它们无法实时获取最新的信息,除非重新训练或通过其他方式更新模型。大模型在某些特定或专业领域的知识可能不够全面,因为这些领域的数据在训练集中可能较少。[heading1]问题十二、大型语言模型的运作机制是什么?[content]大型语言模型的运作机制主要是通过大量的数据训练来学习语言的结构和模式,然后根据输入生成相应的文本。这些模型通过阅读大量的文本数据,学习到语言中的词汇、语法、句子结构以及上下文关系。当你给它一个输入时,它会根据这些学习到的知识生成一个连贯的回答。所以它永远在猜测下一个字符将要生成什么,类似于词语接龙游戏。

06-从0学生图

[heading2]总结关于AI绘图模型的介绍与应用大模型与小模型(Lora)的关系:大模型如同主菜或主食,小模型(Lora)如同佐料或调料包,Lora能帮助快速实现特定风格或角色的绘制。Lora的作用:可改变人物形象、画风,添加模型中原本没有的元素,如绘制特定的国内节日元素。模型的选择与搭配:大模型和Lora要基于同一个基础模型才能搭配使用,以生成各种风格的图片。提示词相关功能:可以用中文写提示词,系统有翻译和扩写功能,能优化提示词。图片高清修复:文生图尺寸较小较模糊,可选择图片进行高清修复。SD软件的图片处理方法图片放大的流程:先画小图,再等比例放大并高分辨率修复。放大时要选择合适的修复方式和重绘幅度,重绘幅度越高,图片越偏离原图但越精致。图片风格转换的操作:在图生图中放入图片,选择想要转换的风格的大模型,调整尺寸,根据需求设置重绘幅度和提示词。线条控制的方法:在文生图中使用添加control Lite功能,选择姿态等控制选项,生成图片,还可通过插件修复脸部。

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
AI 衡量一个AI任务的指标是不是有准确率 和召回率 分别啥区别
在 AI 任务中,常见的衡量指标包括准确率和召回率。准确率(Accuracy)衡量的是模型预测正确的比例。而召回率主要用于信息检索等任务,衡量的是模型能够正确检索出相关内容的比例。 在摘要任务中,一般用 ROUGE 指标,其中 ROUGE2 是把两个 sequence 按 2gram 的方式做切分做频次统计,然后计算 pred 和 gt 之间的召回率。 对于不同的 AI 任务,还有其他多种指标,如在 NLP 中: 信息检索任务常用 NDCG@K 指标,核心衡量最相关文档是否排序足够靠前。 文本生成任务可用 BitsperByte 指标。 针对二分类任务,一般用 ECE 指标(Expected Calibration Error)来度量模型输出概率 p 时,最终正确率真的为 p 的一致性。 此外,还有一些其他方面的评估指标,如不确定性(Calibration and Uncertainty)、鲁棒性(Robustness,包括 invariance 和 equivariance)、公平性(Fairness)、偏见程度(Bias and stereotypes)、有毒性(Toxicity)等。 传统的 RAG 解决方案在检索效率和准确性上存在问题,Anthropic 通过“上下文嵌入”解决了部分问题,但 RAG 的评估仍待解决,研究人员正在探索新的方法,如 Ragnarök。 在提示词设计方面,Claude 官方手册提出“链式提示”的方法理念,将复杂任务拆解为多个步骤,具有准确率高、清晰性好、可追溯性强等好处。ChatGPT 官方手册也有类似理念,同时还有相关论文如在 ICLR 2023 上发表的提出 LeasttoMost Prompting 提示词策略的论文,在文本理解和生成场景中表现优秀。
2025-04-09
工作流 和 智能体的区别?
工作流和智能体的区别主要体现在以下几个方面: 定义: 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 功能: 智能体是一个自动化的“助手”,用来执行特定任务,擅长做一些具体的、重复性的任务,比如客服聊天、推荐商品、处理订单等,但只能按照预先设定的规则和任务来做事,如果遇到超出范围的情况,就不知道怎么办了。 工作流是一系列任务的流程,决定了每个步骤应该做什么,可以处理一个完整的过程,比如从客户下单、付款到发货和售后服务,涵盖了所有步骤和环节,更灵活,能够适应变化,可以调整步骤和规则来应对不同的情况,不需要一开始就固定下来。 范围: 智能体是特定任务的“助手”,用于局部执行任务。 工作流是一个“计划”或“路线图”,指导整个任务的流程。简单说,工作流是全局的,智能体是局部的。 在业务中,通常需要的是工作流而非单个智能体,因为整个业务流程设计至关重要。例如,在烹饪中,关键不在于使用多贵的锅,而是按步骤完成每道工序。因此,工作流才是解决问题的关键,它帮助优化思路、提升效率。设计好工作流才能大幅提升整体业务效率。
2025-04-08
在ai context中,token和word的区别是?
在 AI 领域中,Token 和 Word 有以下区别: 定义和范围:Token 通常是大语言模型处理文本数据时的一个单元,在不同语境下,可能代表一个字、一个词、一个句子、标点、词根、前缀等,更加灵活。而 Word 一般指能够表达一定意义的独立单位,如单词。 语言处理:在英文中,一个 Word 通常是一个词或标点符号。在一些汉语处理系统中,一个 Word 可能是一个字或一个词。而 Token 在不同的语言模型和处理系统中,对应的范围和形式有所不同。 作用和意义:Token 不仅是文本数据的单位,还可能携带丰富的语义、句法等信息,在模型中有着对应的向量表示。Word 主要用于传达相对明确和完整的意义。 计算和收费:大模型的收费计算方法以及对输入输出长度的限制,通常是以 Token 为单位计量的。 例如,在处理“ I’m happy ”这句话时,“I”、“’m”、“happy”可能被视为 Token,而“I’m happy”整体可看作一个 Word 。
2025-04-08
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
人工智能搜索与百度搜索的区别
人工智能搜索与百度搜索存在以下区别: 1. 底层技术:人工智能搜索的底层技术常包括“RAG”,即“检索增强生成”,包括检索、增强和生成三个步骤。而百度搜索的技术构成相对复杂,不断融合新的技术和功能。 2. 发展路径:在中国市场,相较欧美,百度作为搜索巨头已将文心一言大模型融入搜索,提供对话式回答和创作功能。同时,市场上还涌现出如秘塔 AI 搜索等创新型产品,主打“无广告,直接答案”,提供结构化结果和引用来源等特色功能。 3. 产品更新与竞争态势:Google 仍在战斗前线密集释放技能,与其他公司竞争激烈。而百度在新模型发布方面相对较少。此外,Google 推出新功能曾引发大量用户不满,而百度的相关新功能在页面布局和使用体验上更靠近某些特定产品,并聚合了多种创作能力和智能体快捷调用窗口。百度文库也上线了“AI 全网搜”功能,打通了特定工作流,产品功能较为完整,但受限于模型能力,生成内容尚有提升空间。
2025-04-01
用ai建立知识库和直接使用ai有什么区别、
用 AI 建立知识库和直接使用 AI 主要有以下区别: 直接使用 AI 时,AI 生成的内容可能较为笼统模糊,就像遇到只会说“很急,今天就要”却不提供具体指导的领导。若想让 AI 成为得力助手,需对复杂任务进行拆解,提供方法论和定义输出格式。 建立知识库就如同为 AI 准备了“教科书”。知识库灵活,但偶尔会出现查不到内容而“猜题”的情况。例如,将《梦想与颠覆》卡牌等相关内容导入作为 AI 可调用的知识库,后续在创作中激活知识库,AI 会根据场景自动匹配库内素材,使输出更具针对性。 相比之下,微调类似于让 AI“自己真的学会了整本书”,答题更快更准,但训练成本高。微调适合高精度、长期任务,而知识库更适合临时查找、快速问答。
2025-03-30
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
大模型就是指大语言模型吗?有哪些常见的非语言类大模型和小模型,两者的区别和联系是什么?
大模型并非仅指大语言模型。大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型存在以下区别: 1. 处理的信息类型不同:大型语言模型专注于文本信息,而大型多模态模型能处理多种信息类型。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,如文本翻译、生成、情感分析等;大型多模态模型可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型则需要多种类型数据。 当我们提到“小模型”时,是相对大型模型而言,规模较小。这些小模型通常是为完成特定任务而设计,比如最初用于图像分类,只能分辨是或不是某一个东西(如猫、狗)。 “小模型”在特定任务上表现出色,但“大模型”像多功能基础平台,能处理多种任务,应用范围广泛,拥有更多通识知识。 大模型并不拥有无限知识,其知识来源于训练过程中的有限数据,只能回答训练中见过或类似的问题,知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。 大型语言模型的运作机制主要是通过大量数据训练学习语言结构和模式,然后根据输入生成相应文本,类似于词语接龙游戏,永远在猜测下一个字符将要生成什么。
2025-03-16
如何搭建一个工作流来做ai agent 的事情,帮助学生找工作的整个流程,从找合适岗位-> 投递简历 -> 和hr联系 ->做面试前的search工作和面试准备-> 提醒参加面试-> 面试结果追踪,后续的复盘,得到面试经验
搭建一个用于帮助学生找工作的 AI Agent 工作流可以参考以下步骤: 1. 规划 总结任务目标与执行形式,明确帮助学生从找合适岗位到面试结果追踪及复盘的全过程。 将任务分解为可管理的子任务,例如找合适岗位、投递简历、与 HR 联系、面试前准备、提醒参加面试、面试结果追踪和复盘等,并确立它们的逻辑顺序和依赖关系。 设计每个子任务的执行方法,比如确定合适的岗位筛选标准、制定简历投递策略、规划与 HR 沟通的方式等。 2. 实施 在相应的平台(如 Coze 等)上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,例如设置岗位筛选的参数、简历模板和投递渠道、与 HR 联系的话术等,并验证每个子任务的可用性。 3. 完善 整体试运行工作流,识别功能和性能的卡点。 通过反复测试和迭代,优化工作流,直至达到预期效果,例如提高学生找到合适工作的成功率、提升面试表现等。 此外,在技术实现方面,例如实现无代码开发和工具调用,您可以参考以下操作: 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的工作流,也可以直接将相关工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 从 ollama 的 github 仓库找到对应版本并下载,启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。如果 ollama 连接不上,很可能是代理服务器的问题,请将您的 127.0.0.1:11434 添加到不使用代理服务器的列表中。
2025-02-27
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
传感器技术与智慧养老的联系
传感器技术在智慧养老中具有重要作用。在感知模块中,通过多种传感器来收集和处理信息,常见的传感器包括: 1. 可见光相机:负责收集彩色图像。 2. 红外相机:能收集热成像、进行温度测量、实现夜视和透视。可检测物体热辐射,在黑暗中生成图像,用于夜视、热成像、设备过热检测、能源审计和医学成像等,还能穿透烟雾等遮挡物用于应急救援和安全监控。 3. 深度相机:测量图像中各点与相机的距离,获取三维坐标信息。 4. 激光雷达(LiDAR):测量目标物体距离和速度,发射激光脉冲并接收反射光来计算距离,生成高精度三维点云数据,广泛应用于自动驾驶和机器人导航。 5. 超声波传感器:用于避障,通过发射和接收超声波脉冲确定机器人与障碍物的距离,判断障碍物是否存在。 6. 压力传感器:测量机器人手或脚部压力,用于行走和抓取力控制以及避障。 7. 麦克风:负责收音。 以医疗保健为例,在智慧养老场景中,智能传感器可发挥多种作用,如检测临床医生是否正确洗手后进入病人房间、跟踪手术器械、在病人面临跌倒风险时提醒护理团队等。这些技术如同额外的眼睛,为养老服务提供环境智能。还可想象自主机器人运输医疗用品、用增强现实技术引导外科医生更安全高效操作,甚至严重瘫痪病人用脑电波控制机器人完成日常任务。
2025-02-08
帮我找一个能找国外企业联系的AI
以下为您介绍一些能联系国外企业的 AI 相关信息: 在聊天对话类 AI 产品中,国外知名的有 ChatGPT。它由 OpenAI 开发,是首批向公众开放的大规模商用 AI 对话系统之一,在全球范围内引起了 AI 革命。其具有开创性、良好的用户体验和强大的技术实力,但也存在局限性,如对于国内用户可能存在网络连接问题。如果身在海外或有稳定的国际网络连接,ChatGPT 是不错的选择。 关于 AI 生成视频工具,国外的如 Google DeepMind 和 Meta 有所展示。Meta 的 Movie Gen 核心包含 30 亿视频生成和 13 亿音频生成模型。但报告中未对中国的相关工具展开详细说明,实际上 2024 年国内涌现了类似可灵、即梦、智谱清影等一系列生成视频工具,生成结果甚至远超国外。
2024-12-18
目前模型之间是如何分类的
目前模型的分类方式多种多样,以下为您介绍几种常见的分类角度: 1. 从来源角度:根据模型的出处,可分为来自行业(如 Google、Meta、OpenAI 等公司)、学术界(如清华大学、麻省理工学院、牛津大学等)、政府(如英国的艾伦·图灵研究所、阿布扎比的技术创新研究所等)以及研究团体(如艾伦研究所、弗劳恩霍夫研究所等非营利性 AI 研究组织)。在 2014 年之前,学术界在发布机器学习模型方面领先,此后行业占据主导。 2. 从整体架构角度: 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 数据层:包括企业根据自身特性维护的静态知识库和动态的三方数据集,而非用于基层模型训练的数据基集。 模型层:分为 LLm(如 GPT 等大语言模型,一般使用 transformer 算法实现)和多模态模型(如文生图、图生图等模型,训练数据为图文或声音等多模态数据集)。 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用之间的组成部分。 表现层:即应用层,是用户实际看到的部分。 此外,像 OpenAI o3mini 模型,在 OpenAI 的准备框架中被分类为中等风险,并采取了相应的保障和安全缓解措施。
2025-04-13
deepseek与chatgpt之间的差别
DeepSeek 与 ChatGPT 存在以下差别: 1. App Store 排名:DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与推广:DeepSeek 没有市场部和市场投放,依靠技术实力和口碑获得认可;而 ChatGPT 可能有不同的推广策略。 3. 性能与成本:DeepSeek R1 效果比肩顶尖闭源模型 o1,价格仅为 o1 的 27 分之一。 4. 开源与创新:DeepSeek R1 开源让行业认知拉齐,得到尊重和喜爱;ChatGPT 可能在开源方面有所不同。 5. 创新模型:DeepSeek R1 的创新模型 R1 Zero 跳过监督微调(SFT)阶段,直接采用强化学习(RL)训练,且发现模型思考能力可自我涌现。 6. 影响:DeepSeek R1 的发布引发美国科技界恐慌,挑战英伟达市场地位;ChatGPT 也有其自身的影响。 此外,游戏科学创始人冯骥称 DeepSeek 具备强大、便宜、开源、免费、联网和本土等六大优势,全面超过现有 AI 大模型。相关报道还指出 DeepSeek R1 在美国 App Store 夺冠,成为开源 AI 领域的领军者。
2025-03-27
AI、AIGC、大模型这三者之间有什么关系
AI(人工智能)是一种让机器展现智慧的目标。AIGC(人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。大模型如大语言模型(LLM)是具有大量参数的“深度学习”模型。 生成式 AI 是一种让机器产生复杂有结构内容的目标。机器学习是让机器自动从资料中找公式的手段,深度学习是更厉害的类神经网络且有大量参数的手段。 AIGC 技术可用于多种应用,如自动撰写新闻文章、生成艺术画作等。ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,它是基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-13
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
agent 打通应用之间的协议?
在 AI 领域中,Agent 是连接模型与应用的关键。端侧 Agents 是在终端设备上自主运行的智能代理程序,具备感知、决策、执行的闭环能力。 Agent 之所以重要,原因包括:端侧资源约束要求最优化使用,任务具有复杂性,生态存在多样性,双系统路线更适合端侧。 Agent 创造价值的方式体现在双重价值实现:一是资源优化,包括任务分解、按需调用;二是生态连接,比如跨应用协作、UI 理解。 其发展趋势包括:技术上从单一模型到多智能体协作;生态上从封闭应用到开放服务;交互上从指令执行到场景理解。 在技术层面,AI Agent 的发展出现了两条技术路线:一是以自主决策为核心的 LLM 控制流,二是以工作流(Workflow)编排为重点的工具集成系统。 特别值得关注的是 Anthropic 提出的 MCP(Model Context Protocol),它的本质是一个通用接口协议,试图解决让 AI 模型能够以标准化、可扩展的方式与外部世界交互的问题。 此外,还有 Agent Protocol 这种用于与 AI 代理进行通信的统一接口,它提供了一种 API 规范,任何代理开发者都可以实现该协议,设计简单且不依赖特定技术栈,有助于生态系统发展和简化集成,并提供了不同语言的 SDK 供开发者使用。
2025-03-09
我有个计算流体力学相关的数值模式,代码是C++写的,几万行,有多个文件,各个文件之间是相互关联,现在想对代码的运行效率、代码规范等进行优化升级,有什么AI工具推荐
目前在您所描述的这种对大规模、相互关联的 C++代码进行运行效率和代码规范优化升级的场景中,暂时没有特别直接适用的 AI 工具。不过,您可以考虑使用一些传统的代码分析和优化工具,例如: 1. ClangTidy:这是一个用于 C++代码的静态分析工具,可以帮助发现代码中的潜在问题,并提供一些改进建议。 2. Valgrind:用于检测内存管理错误和性能问题。 同时,您也可以利用一些代码版本管理工具,如 Git,来更好地跟踪和管理代码的修改。
2025-03-08